Multiple sulfur isotope determination on SO$_2$ gas

Stanislaw Halas and Tomasz Pienkos
Mass Spectrometry Laboratory, Maria Curie-Sklodowska University, 20-031 Lublin, Poland

The principal motivation of this study is to apply SO$_2$ gas in the multiple isotope analysis (i.e. simultaneous analysis of sulfur isotope ratios: $^{33}$S/$^{32}$S , $^{34}$S/$^{32}$S and $^{36}$S/$^{32}$S) rather than SF$_6$ gas. SO$_2$ gas can be easily prepared from sulfides (Robinson and Kusakabe 1975) and from sulfates (Halas and Wolacewicz 1981), whilst the preparation of SF$_6$ gas requires the use of a fluorination line (Ono et al. 2006) and a mass spectrometer with enhanced resolving power to resolve isotope peaks $^{33}$SF$_5$- from $^{32}$SF$_5$- (masses 128 and 127).

In the patent application (Halas et al. 2016) we have described a new ion source which can be applied for analysis of gases. The new ion source significantly enhances generation, both positive and negative, ions in comparison to commonly used Nier type. The analyzed gas is admitted from a dual inlet system to the ion source through separate capillaries connected to the pneumatically operated changeover valve as described by Halas (1979).

It is important to have SO$_2$ samples well purified from volatiles which eliminates O$_2$ interference at mass 32 peak. A great advantage of the isotope analysis on S+ instead on SO+ or SO$_2$+spectra is that there is no need to keep constant oxygen isotopic composition in the SO$_2$ gas. Usually sulfide and sulfate samples have different oxygen, but it doesn’t matter in the case of analysis on S+.

The achieved precision ($1\sigma$) on positive ion beams was better than 0.1‰ and 0.01‰ for $\delta^{36}$S and $\delta^{34}$S, respectively. Unfortunately $\delta^{33}$S cannot be measured in this way, because of formation of $^{32}$SH+ ions which interfere with $^{33}$S+. The details of the design of the ion source, vacuum system and electronic controllers are presented in the poster.

We thank to Dr. Keith Hackley for donation of an old mass spectrometer to UMCS, on the basis of which we were able to develop the new instrument. This study was supported by NCN project 2013/11/B/ST10/00250.

References
