

What root traits determine resistance of grasses to phosphorus deficiency in managed grasslands?

Mart Ros (1), Gerlinde De Deyn (1), Gerwin Koopmans (1), Oene Oenema (1,2), and Jan Willem van Groenigen (1)

(1) Department of Soil Quality, Wageningen University and Research, Wageningen, The Netherlands, (2) Alterra, Wageningen University and Research, Wageningen, The Netherlands

Phosphorus (P) inputs into agricultural soils are declining as a result of restricted P application and diminishing global P resources. To maintain high productivity of managed grasslands, it is therefore imperative to identify key root traits that determine P acquisition of grasses in soils with low P status. In a 9-month greenhouse experiment we grew eight common grass species and cultivars on a soil with a low P status, and related root morphological traits to their performance under P-limiting conditions. We applied (P1) or withheld (P0) P fertilisation while providing adequate amounts of all other nutrients. Biomass production differed significantly ($p<0.001$) amongst species and fertilisation treatments, varying from 17.1 to 72.1 g pot⁻¹ in the P0 treatment and from 33.4 to 85.8 g pot⁻¹ in the P1 treatment. We observed a trade-off between root biomass and specific root length. Structural equation modelling identified total root length as key factor with respect to resistance to P deficiency, especially when roots explored the subsoil. Optimising root length and subsoil exploration could be the key to maintaining high productivity of grasslands with decreasing P availability. This is relevant for both plant breeding programmes and in composing seed mixtures for reseeding grassland.