Geophysical Research Abstracts Vol. 19, EGU2017-17877, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Contextualising the topographic signature of historic mining, a scaling analysis

Liam Reinhardt

University of Exeter, Geography, Penryn, United Kingdom (liam.reinhardt@exeter.ac.uk)

Mining is globally one of the most significant means by which humans alter landscapes; we do so through erosion (mining), transport, and deposition of extracted sediments (waste). The iconic Dartmoor mountain landscape of SW England (~700km2) has experienced over 1000 years of shallow (Cu & Sn) mining that has left a pervasive imprint on the landscape. The availability of high resolution digital elevation models (<=1m) and aerial photographs (@12.5 cm resolution) combined with historic records of mining activity and output make this an ideal location to investigate the topographic signature of mining. Conceptually I ask the question: how much (digital elevation model) smoothing is required to remove the human imprint from this landscape ? While we may have entered the Anthropocene other gravity driven process have imparted distinct scale-dependant signatures. How might the human signature differ from these processes and how pervasive is it at the landscape scale? Spatial scaling analysis (curvature & semi-variance) was used to quantify the topographic signature of historic mining and to determine how it differs to a) natural landforms such as bedrock tors; and b) the morphology of biological activity (e.g. peat formation). Other forms of historic activity such as peat cutting and quarrying were also investigated. The existence of \sim 400 years of mine activity archives also makes it possible to distinguish between the imprint of differing forms of mine technology and their spatio-temporal signature. Interestingly the higher technology 19th C mines have left a much smaller topographic legacy than Medieval miners; though the former had a much greater impact in terms of heavy metal contamination.