

Combining MRS and ERT Surveys to Characterise Hard Rock Aquifer Properties

Anatoly Legtchenko (1), Jean-Christophe Comte (2), Ulrich Ofterdinger (3), John Walsh (4), Jean-Michel Vouillamoz (1), and Fabrice Lawson (1)

(1) Institut de Recherche pour le Développement (IRD), Laboratoire d'étude des Transferts en Hydrologie et Environnement (LTHE): Domaine Universitaire, 70, Rue de la Physique, 38 400 Saint Martin d'Hères, France, (2) University of Aberdeen, School of Geosciences, Meston Building, Old Aberdeen AB24 3UE, UK, (3) Queen's University Belfast, School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, (4) University College Dublin, School of Geosciences, Belfield, Dublin, Ireland

As a consequence of the implementation of the Water Framework Directive across Europe, water resources management in Europe requires increasingly complex quantitative management tools on a catchment scale. Numerical groundwater models are frequently employed in this process. A limitation to the modelling approach is commonly the lack of certainty with regard to the required model input parameters such as aquifer transmissivity T , aquifer storage S and effective porosity n_e due to the limitation of direct physical data at a relevant scale. Fractured bedrock aquifers, as encountered across >60% of the Island of Ireland, pose a particular challenge in this context, as point-based physical measurements of hydrogeological parameters (such as derived from traditional borehole observations and testing) often fail to adequately characterise these complex aquifer systems at a scale relevant to better understand groundwater flow paths and contaminant transport processes. The presented study completed a Magnetic Resonance Sounding (MRS) survey along a hillslope transect through a case study catchment underlain by Precambrian weathered-fractured bedrock aquifer units in County Donegal, Ireland. The study highlighted the feasibility of applying the Magnetic Resonance Sounding (MRS) technique for determining aquifer effective porosities in fractured bedrock environments at the decametre scale. In combination with data from previously completed Electric Resistivity Tomography (ERT) surveys along the approx. 1500 m catchment transect, the study was able to resolve the variation in aquifer porosities across the weathered and un-weathered vertical profile of the fractured bedrock units ranging from 0.3 to 3.4 %, thus taking advantage of both the high spatial resolution of the ERT data for imaging structural bedrock geometry and the direct measurements of aquifer storage properties from the MRS survey.