Geophysical Research Abstracts Vol. 19, EGU2017-237, 2017 EGU General Assembly 2017 © Author(s) 2016. CC Attribution 3.0 License.

Caprock integrity and induced seismicity from laboratory and numerical experiments

Victor Vilarrasa (1,2) and Roman Makhnenko (3)

 (1) Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain (victor.vilarrasa@upc.edu), (2) Associated Unit: Hydrogeology Group (UPC-CSIC), Barcelona, Spain, (3)
Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, USA

 CO_2 leakage, either across the caprock or through faults, is a major concern for geologic carbon storage. To assess the caprock sealing capacity and the strength of faults, we investigate clay-rich geomaterials in the laboratory. We focus on the thermo-hydro-mechanical coupled processes that shale may undergo during CO_2 storage. Specimens of Opalinus clay – a Swiss shale – are brought to the conditions of suitable storage formations (1 km depth) and are fully saturated with in-situ brine. Poro-thermo-mechanical parameters are measured in drained, undrained, and unjacketed compression experiments. We use the measured parameters at the laboratory as input data to a numerical model that simulates CO_2 injection in a deep saline aquifer bounded by a low-permeable fault. We find that the caprock sealing capacity is maintained and that even the fault may undergo a series of microseismic events, leakage is unlikely to occur through the ductile clay-rich fault.