Geophysical Research Abstracts Vol. 19, EGU2017-2792, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.



## Discrete post-processing of total cloud cover ensemble forecasts

Stephan Hemri (1), Thomas Haiden (2), and Florian Pappenberger (2)

(1) HITS gGmbH, Heidelberg, Germany (stephan.hemri@h-its.org), (2) European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model.

**Reference** Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. *Monthly Weather Review 144*, 2565–2577.