Geophysical Research Abstracts Vol. 19, EGU2017-366-1, 2017 EGU General Assembly 2017 © Author(s) 2016. CC Attribution 3.0 License.

187 Re – 232 Th – 238 U nuclear geochronometry: constraining magmatism in East-Antarctica and the break-up of Gondwana

Goetz Roller

Institute for Nuclear Planetology, Geo- and Cosmochronometry, Munich, Germany (goetz.roller@gmail.com)

 187 Re $-^{232}$ Th $-^{238}$ U nuclear geochronometry is a new dating method for astronomy, earth and planetary sciences [1-4]. Nucleogeochronometric Rhenium-Osmium two-point-isochron (TPI) ages are calculated using a nuclear geochronometer as one data point in a two-point-isochron diagram [5-7]. The IVREA chronometer, for example, is one of five terrestrial nuclear geochronometers identified so far [8]. Here, it is used to constrain the magmatism of the Ferrar flood basalt province, which has been related to continental rifting and the break-up of Gondwana in the Jurassic.TPI ages for seven (basaltic) andesite whole rock samples from the Prince Albert Mountains (Victoria Land, Antarctica) are calculated. An isochron age of 172 ± 5 Ma (187 Os/ 188 Os_i = 0.194 ± 0.023) has previously been published for these rocks [9]. Initial TPI 187 Os/ 188 Os_i ratios show only minor scatter between 187 Os/ 188 Os_i = 0.2149 \pm 0.0064 and 187 Os/ 188 Os_i = 0.22231 \pm 0.00080, in agreement with the enigmatic, suprachondritic $^{187}\text{Os}/^{188}\text{Os}_i = 0.194 \pm 0.023$ from the isochron [9]. TPI ages for the Mount Joyce samples range from 125.4 \pm 9.9 Ma to 139 \pm 17 Ma and thus constrain the youngest magmatic event(s) in the Transantarctic Mountains. For the Thumb Point basalt, a TPI age of 219 ± 81 Ma is calculated. Despite of its large uncertainty, the age itself is in agreement with the Triassic 224 Ma and 240 Ma events reported from North Patagonia [10]. The TPI age of 186.1 ± 8.1 Ma from the Ricker Hill basalt can be clearly distinguished from the Mount Murray TPI age of 158 \pm 14 Ma, while at Brimstone Peak two TPI age groups of 155 \pm 14 Ma and 175.3 \pm 3.1 Ma are observed. From this it may be concluded that the seven TPI ages indicate episodic magmatic activity in East-Antarctica between 125 Ma and 219 Ma, leading to the break-up of Gondwana. This picture is consistent with the geochronology of the Antarctic Peninsula, Patagonia, the Karoo and the Ferrar mafic rocks [10]. Thus, besides constraining planetary crust formation in general, nuclear geochronometry may also become an additional powerful tool in constraining not only magmatic activity in Antarctica but also the assembly and break-up of Pangaea and subsequently Gondwana from the Carboniferous on, as revealed by means of nuclear geochronometry for the ultramafic dykes within the Balmuccia peridotite (Ivrea Zone, NW Italy).

[1] Roller (2015), Goldschmidt Conf. Abstr. 25, 2672. [2] Roller (2016), Goldschmidt Conf. Abstr. 26, 2642. [3] Roller (2015), Geophys Res. Abstr. 17, 2399. [4] Roller (2016), Geophys Res. Abstr. 18, 33. [5] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-001); NICXIV Abstr. #1570244284. [6] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-002); NICXIV Abstr. #1570244285). [7] Roller (2016), JPS Conf. Proc., Nuclei in the Cosmos (NIC XIV), Niigata, Japan, subm. (NICXIV-003); NICXIV Abstr. #1570244281. [8] Roller (2015), Geophys Res. Abstr. 17, 17. [9] Molzahn et al. (1996), Earth Planet. Sci. Lett. 144, 529 – 546. [10] Pankhurst et al. (2000), J. Petrol. 41, 605 – 625.