

Evidence for substantial forestry canopy processing of nitrogen deposition using isotopic tracer experiments in low deposition conditions

Daniele Ferraretto and Kate Heal United Kingdom (d.ferraretto@sms.ed.ac.uk)

Temperate forest ecosystems are significant sinks for nitrogen deposition (N_{dep}) yielding benefits such as protection of waterbodies from eutrophication and enhanced sequestration of atmospheric CO₂. Previous studies have shown evidence of biological nitrification and N_{dep} processing and retention in forest canopies. However, this was reported only at sites with high environmental or experimentally enhanced rates of N_{dep} (~18 kg N ha⁻¹ y⁻¹) and has not yet been demonstrated in low N_{dep} environments. We have used bulk field hydrochemical measurements and labelled isotopic experiments to assess canopy processing in a lower N_{dep} environment (~7 kg N ha⁻¹ year⁻¹) at a Sitka spruce plantation in Perthshire, Scotland, representing the dominant tree species (24%) in woodlands in Great Britain. Analysis of 4.5 years of measured N fluxes in rainfall (RF) and fogwater onto the canopy and throughfall (TF) and stemflow (SF) below the canopy suggests strong transformation and uptake of N_{dep} . To validate these plot-scale results and track N uptake within the forest canopy in different seasons, double ¹⁵N-labelled NH₄NO₃ (98%) solution was sprayed in summer and winter onto the canopy of three trees at the measurement site. RF, TF and SF samples have been collected and analysed for ¹⁵NH₄ and ¹⁵NO₃. Comparing the amount of labelled N recovered under the sample trees with the measured δ^{15} N signal is expected to provide further evidence of the role of forest canopies in actively processing and retaining atmospheric N deposition.