

Electromagnetic Signatures of European North Atlantic Winter Thunderstorms

Ivana Kolmasova (1,2), Ondrej Santolik (1,2), Jiri Guth Jarkovsky (2), Radek Lan (1), and Ludek Uhlir (1)

(1) Institute of Atmospheric Physics, CAS, Prague, Czech Republic (iko@ufa.cas.cz), (2) Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

We present results of three-component VLF measurements of unusual daytime tweek atmospherics, which we have recorded in a favorable electromagnetic environment on the summit of La Grande Montagne (1028 m, 43.9410N, 5.4836E), Plateau d'Albion, France in January 2015. The observed daytime tweek atmospherics have a clear frequency dispersion which we are able to analyze above the first ionospheric cutoff. We estimate model parameters of the characteristic frequency dispersion as a function of time. Using the obtained parameters we are able to evaluate the tweek reflection heights and propagation distances from their source lightning discharges. The three-component measurement allows us to estimate the arrival direction. The source lightning strokes of observed unusual daytime tweeks were found to originate in a sequence of severe winter thunderstorms which hit Ireland, the UK, Norway, Denmark, Germany, and Poland in January 2015. Based on our analysis we show that a thunderstorm occurring at higher latitudes of northern and north-western Europe during winter months is an ideal candidate for the source of tweeks, which could be observed unexpectedly during the day.