Geophysical Research Abstracts Vol. 19, EGU2017-4332, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Direct space-based observations of anthropogenic CO_2 emission areas from OCO-2

Janne Hakkarainen, Iolanda Ialongo, and Johanna Tamminen Finnish Meteorological Institute, Earth Observation, Helsinki, Finland (janne.hakkarainen@fmi.fi)

Anthropogenic CO_2 emissions from fossil fuel combustion have large impacts on climate. In order to monitor the increasing CO_2 concentrations in the atmosphere, accurate spaceborne observations—as available from the Orbiting Carbon Observatory-2 (OCO-2)—are needed. This work provides the first direct observation of anthropogenic CO_2 from OCO-2 over the main pollution regions: eastern USA, central Europe, and East Asia. This is achieved by deseasonalizing and detrending OCO-2 CO_2 observations to derive CO_2 anomalies. Several small isolated emission areas (such as large cities) are detectable from the anomaly maps. The spatial distribution of the CO_2 anomaly matches the features observed in the maps of the Ozone Monitoring Instrument NO_2 tropospheric columns, used as an indicator of atmospheric pollution. The results of a cluster analysis confirm the spatial correlation between CO_2 and NO_2 data over areas with different amounts of pollution. We found positive correlation between CO_2 anomalies and emission inventories. The results demonstrate the power of spaceborne data for monitoring anthropogenic CO_2 emissions.