Geophysical Research Abstracts Vol. 19, EGU2017-4945-2, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.



## Ground vegetation reduces forest floor net CH<sub>4</sub> uptake in a boreal upland forest

Mari Pihlatie (1,2), Antti-Jussi Kieloaho (1), Elisa Halmeenmäki (1,2), Kira Ryhti (2), and Jussi Heinonsalo (3) (1) University of Helsinki, Department of Physics, Helsinki, Finland (mari.pihlatie@helsinki.fi), (2) University of Helsinki, Department of Forest Sciences, Helsinki, Finland, (3) University of Helsinki, Department of Food and Environmental Sciences, Helsinki, Finland

Boreal upland forests are considered as an important sink for the greenhouse gas methane  $(CH_4)$  due to  $CH_4$  oxidizing microbes in the soil. Recent studies have reported significant  $CH_4$  emissions from trees in both upland and wetland forests, however, contribution of ground vegetation to the net  $CH_4$  exchange has not been assessed. As the processes and process drivers of the  $CH_4$  emissions from vegetation are still poorly understood, partitioning the  $CH_4$  exchange in forest ecosystems to soil, ground vegetation and trees is a way to improve our understanding of the  $CH_4$  cycling processes in forest ecosystems.

We measured the forest floor  $CH_4$  exchange at a Scots pine dominated boreal upland forest in Southern Finland (SMEAR II station) during the growing season 2015. The forest floor consisted of mostly shrubs of bilberry (*Vaccinium myrtillus*), lingonberry (*Vaccinium vitis-idaea*), heather (*Calluna vulgaris*), and forest floor mosses (*Pleurozium schreberi*, *Hylocomium splendens*, and *Dicranum polysetum*). We measured the  $CH_4$  fluxes using transparent chambers under three vegetation treatments: normal vegetation (normal), shrubs only (shrubs), and non-vegetated (cut), and under three soil trenching treatments: control, 50  $\mu$ m mesh (roots of trees and shrubs excluded), and 1  $\mu$ m mesh (roots of trees and shrubs, and microbes excluded).

Forest floor acted as a sink of  $CH_4$  in all the vegetation and trenching treatments. Presence of ground layer vegetation significantly reduced the forest floor  $CH_4$  uptake, whereas soil trenching did not affect the  $CH_4$  exchange. Over the period of May – October 2015, the mean forest floor  $CH_4$  fluxes were -53.7 (± 3.1 SE), -96.7 (± 3.7), and -91.4 (± 4.3)  $\mu$ g  $CH_4$  m<sup>2</sup> h<sup>-1</sup> from normal, shrubs and cut treatments, respectively. The presence of ground vegetation hence nearly halved the forest floor  $CH_4$  uptake compared to the shrubs only and cut treatments. As the largest difference between normal and shrubs treatments were the absence of mosses, our findings suggests that especially mosses play an important role in the forest floor  $CH_4$  exchange as their removal drastically increased the net  $CH_4$  uptake.