

Sulfur dioxide OMI retrievals combined with seismic network data reveals magma migration at active volcanoes in North Kivu region

Nicolas Theys (1), Julien Barrière (2,3), Adrien Oth (3), Hugues Brenot (1), Michel Van Roozendaal (1), and François Kervyn (4)

(1) BIRA-IASB, Bruxelles, Belgium (theys@aeronomie.be), (2) National Museum of Natural History (NMHN), Department of Geophysics/Astrophysics, Grand Duchy of Luxembourg, (3) European Center for Geodynamics and Seismology (ECGS) Grand Duchy of Luxembourg, (4) Royal Museum for Central Africa (RMCA), Department of Earth Sciences, Belgium

The Kivu region is a densely populated area hosting two very active volcanoes, Nyiragongo and Nyamulagira, which require continuous surveillance using the widest means of observation as possible.

This study presents a 12-year dataset of satellite observations of SO₂ over North Kivu from the OMI instrument. Short- and long-term changes in volcanic SO₂ emissions are investigated and satellite data oversampling is used to discriminate the volcanic sources for the full OMI mission. As the same SO₂ retrieval algorithm will be applied operationally to the forthcoming TROPOMI instrument (onboard the ESA Sentinel-5 Precursor platform), the observational time series will expand in the future, with enhanced quality.

For the years 2014-2016, the satellite SO₂ dataset is combined with seismic observations from a 11-stations network that operated continuously during that period. The variations of seismic activity and SO₂ degassing display a high-level of consistency and we present a multidisciplinary tracking approach by combining the two types of observational data. This methodology allows for a robust discrimination of magma migration into and out of the shallow plumbing system, improving our ability to interpret signs of volcanic unrest on a daily time scale.