

Using dual carbon isotopes, ¹³C and ¹⁴C, to resolve the origin, mixing and alteration of major carbon pools in shallow-water CO₂ vents (Kueishantao hydrothermal field, offshore Taiwan)

Shing-Lin Wang, Yu-Shih Lin, George Burr, and Chau-Chang Wang College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan (jslwang@ntu.edu.tw)

Submarine hydrothermal vents at convergent boundaries tend to emit CO₂-rich fluids due to the subduction of marine sediment. In the shallow-water hydrothermal field, the carbon dioxide gas bubbles can reach to the surface seawater and may alter the surface seawater chemistry and the planktonic microbial community. We use duel carbon isotopes, ¹³C and ¹⁴C, to evaluate the effect of additional CO₂ input on the major carbon pools in ambient seawater of hydrothermal vents. Radiocarbon (¹⁴C) is undetectable in hydrothermal CO₂ (Δ^{14} C ~-1000‰), so this "radiocarbon-dead" CO2 can be used as an end-member to constrain the carbon sources in the hydrothermal field. Here we report δ^{13} C and Δ^{14} C values of CO₂(g), dissolved inorganic carbon (DIC) and particulate organic carbon (POC) within and above two vents, yellow vent (YV) and white vent (WV), in the Kueishantao shallowwater hydrothermal field, northeastern offshore Taiwan. The results show that the δ^{13} C value of vent CO₂ gas is around -6% within the range of mantle source. DIC was ${}^{13}C$ -depleted (around -9%) than CO₂ gas and POC were more ¹³C-depleted in YV (-25.7‰) and in WV (-22.4‰). The Δ^{14} C values of vent CO₂ are slightly higher than -1000 % with $-949.2\pm16.0 \%$ in YV (Temp. = 116° C) and $-890.7\pm7.6\%$ in WV (Temp. = 58° C). It suggests the radiocarbon composition is more than 90% radiocarbon-dead carbon mixed with less than 10% modern carbon. Our result clearly indicates the main component in vent CO_2 gas is the mantle-derived carbon and it is supported by helium isotopic compositions (YV, 7.5 \pm 0.1 Ra; WV, 7.1 \pm 0.2 Ra). We expect the Δ^{14} C values of DIC and POC above the two vents will also reflect the mantle-derive signal and it will also reveal how much the carbon is emitted from hydrothermal vents and exchanged within these major carbon pools in the ambient seawater.