Geophysical Research Abstracts Vol. 19, EGU2017-5798, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License. ## Analysis of Influential Factors for the Relationship between $PM_{2.5}$ and AOD in Beijing Caiwang Zheng (1,2) and Chuanfeng Zhao (1,2) (1) College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing 100875, China (caiwangzheng@mail.bnu.edu.cn), (2) Joint Center for Global Change Studies, Beijing, 100875, China (caiwangzheng@mail.bnu.edu.cn) Relationship between aerosol optical depth (AOD) and PM_{2.5} is often investigated in order to obtain surface PM_{2.5} from satellite observation of AOD with a broad area coverage. However, various factors could affect the AOD-PM_{2.5} regressions. Using both ground and satellite observations in Beijing from 2011 to 2015, this study analyzes the influential factors including aerosol type, relative humidity (RH), atmospheric boundary layer height (PBLH), wind speed and direction, and the vertical structure of aerosol distribution. The ratio of PM_{2.5} to AOD, which is defined as η , and the square of their correlation coefficient (R²) have been examined. It shows that η varies from 54.32 to 183.14, 87.32 to 104.79, 95.13 to 163.52 and 1.23 to 235.08 μ g/m³ with aerosol type in four seasons respectively. η is smaller for scattering-dominant aerosols than for absorbing-dominant aerosols, and smaller for coarse mode aerosols than for fine mode aerosols. Both RH and PBLH affect the η value significantly. The higher the RH, the larger the η , and the higher the PBLH, the smaller the η . For AOD and PM_{2.5} data with the correction of RH and PBLH compared to those without, R² of monthly averaged PM_{2.5} and AOD at 14:00 LT increases from 0.63 to 0.76, and R² of multi-year averaged PM_{2.5} and AOD by time of day increases from 0.1 to 0.93, 0.24 to 0.84, 0.85 to 0.91 and 0.84 to 0.93 in four seasons respectively. Wind direction is a key factor to the transport and spatialtemporal distribution of aerosols originated from different sources with distinctive physicochemical characteristics. Similar to the variation of AOD and PM_{2.5}, η also decreases with the increasing surface wind speed, indicating that the contribution of surface PM_{2.5} concentrations to AOD decreases with surface wind speed. The vertical structure of aerosol exhibits a remarkable change with seasons, with most particles concentrated within about 500 m in summer and within 150 m in winter. Compared to the AOD of the whole atmosphere, AOD below 500 m has a better correlation with PM_{2.5}, for which R² is 0.77. This study suggests that all the above influential factors should be considered when we investigate the PM_{2.5}-AOD relationships.