Geophysical Research Abstracts Vol. 19, EGU2017-5845-1, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Evolution of air content in Greenland firn using the UW Community Firn Model

C. Max Stevens, Brita I. Horlings, Annika N. Horlings, Emma Kahle, Knut Christianson, Eric Steig, and Edwin Waddington

University of Washington, Earth and Space Sciences, Seattle, United States (edw@uw.edu)

Accurate calculations of ice-sheet mass loss are necessary for estimations of future sea-level rise. Surface-elevation changes are measured by satellite altimetry; however, firn-compaction models are needed to convert measured volume changes into mass changes. Uncertainty in firn-model predictions of density-depth profiles and their evolution remains among the largest contributors to uncertainty in those ice-sheet mass-balance calculations.

Using the UW Community Firn Model (CFM), we force an ensemble of published firn models with re-analysisbased temperature and accumulation-rate histories for Greenland (e.g. RACMO), in order to calculate histories of depth-density profiles and depth-integrated porosity (DIP).

In order to avoid start-up transients when we compare histories from various models, all of the models go through a spin-up phase in which the density-depth profile "forgets" its initial condition in the past. However, the models cannot completely forget the boundary conditions (i.e. the spin-up climate history). Because the climate of Greenland is not steady, and is not well known in past centuries, uncertainties in this spin-up climate history can propagate into uncertainties when driving the models with modern re-analysis data.

Because the models implicitly or explicitly incorporate a range of parameterizations of firn-compaction physics, the models also produce a corresponding range of transient responses to modern re-analysis forcing.

We explore the spread of results and range of uncertainty in depth-density profiles and DIP due to (a) spin-up climate uncertainties, and (b) firn-model choice, i.e. incorporated model physics.

Model parameters can be adjusted based on comparison with current-day density profiles, but non-uniqueness remains due to uncertain spin-up climate, and incomplete physics in the models.

The results illustrate the current diversity among firn-compaction models, and point to a role for firn-compaction models based on constitutive relationships derived using measured strain rates and micro-structural measurements on firn cores.