Geophysical Research Abstracts Vol. 19, EGU2017-7034, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License.

Progress in the analysis and interpretation of N_2O isotopes: Potential and future challenges

Joachim Mohn, Béla Tuzson, Christoph Zellweger, Eliza Harris, Erkan Ibraim, Longfei Yu, and Lukas Emmenegger

Empa, Air Pollution & Environmental Technology, Duebendorf, Switzerland (joachim.mohn@empa.ch)

In recent years, research on nitrous oxide (N_2O) stable isotopes has significantly advanced, addressing an increasing number of research questions in biogeochemical and atmospheric sciences [1]. An important milestone was the development of quantum cascade laser based spectroscopic devices [2], which are inherently specific for structural isomers $(^{15}N^{14}N^{16}O)$ vs. $^{14}N^{15}N^{16}O)$ and capable to collect real-time data with high temporal resolution, complementary to the well-established isotope-ratio mass-spectrometry (IRMS) method. In combination with automated preconcentration, optical isotope ratio spectroscopy (OIRS) has been applied to disentangle source processes in suburban, rural and pristine environments [e.g. 3, 4].

Within the European Metrology Research Programme (EMRP) ENV52 project "Metrology for high-impact greenhouse gases (HIGHGAS)", the quality of N₂O stable isotope analysis by OIRS, the comparability between laboratories, and the traceability to the international isotope ratio scales have been addressed. An inter-laboratory comparison between eleven IRMS and OIRS laboratories, organised within HIGHGAS, indicated limited comparability for ¹⁵N site preference, i.e. the difference between ¹⁵N abundance in central (N*NO) and end (*NNO) position [5]. In addition, the accuracy of the NH₄NO₃ decomposition reaction, which provides the link between ¹⁵N site preference and the international ¹⁵N/¹⁴N scale, was found to be limited by non-quantitative NH₄NO₃ decomposition in combination with substantially different isotope enrichment factors for both nitrogen atoms [6].

Results of the HIGHGAS project indicate that the following research tasks have to be completed to foster research on N_2O isotopes: 1) develop improved techniques to link the ^{15}N and ^{18}O abundance and the ^{15}N site preference in N_2O to the international stable isotope ratio scales; 2) provide N_2O reference materials, pure and diluted in an air matrix, to improve inter-laboratory compatibility. These tasks will be addressed in the upcoming European Metrology Programme for Innovation and Research (EMPIR) project "Metrology for Stable Isotope Reference Standards (SIRS)" starting in June 2017.

Acknowledgement

Part of this work has been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References

- [1] S. Toyoda et al., Isotopocule analysis of biologically produced nitrous oxide in various environments, Mass Spectrom. Rev., Doi 10.1002/mas.21459 (2015).
- [2] J. Mohn et al., Site selective real-time measurements of atmospheric N_2O isotopomers by laser spectroscopy, Atmos. Meas. Tech. 5(7), 1601-1609 (2012).
- [3] B. Wolf et al., First on-line isotopic characterization of N_2O above intensively managed grassland, Biogeosci. 12, 2517–2531, (2015).
- [4] E. Harris et al., Tracking nitrous oxide emission processes at a suburban site with semi-continuous, in-situ measurements of isotopic composition, J. Geophys. Res. Atmos., accepted (2016).
- [5] J. Mohn et al., Interlaboratory assessment of nitrous oxide isotopomer analysis by isotope ratio mass spectrometry and laser spectroscopy: current status and perspectives, Rapid Commun. Mass Spectrom. 28, 1995–2007 (2014).
- [6] J. Mohn et al. Reassessment of the NH_4NO_3 thermal decomposition technique for calibration of the N_2O isotopic composition, Rapid Commun. Mass Spectrom. 30, 2487–2496 (2016).