

Effects of silvicultural management intensity on fluxes of dissolved and particulate organic matter in 27 forest sites of the Biodiversity Exploratories

Beate Michalzik (1), Sebastian Bischoff (1), Delphis Levia (2), Martin Schwarz (3), Peter Escher (4), Wolfgang Wilcke (4), Lisa Thieme (5), Katja Kerber (5), Martin Kaupenjohann (5), and Jan Siemens (6)

(1) Friedrich-Schiller-Universität Jena, Institut für Geographie, Professur für Bodenkunde, Jena, Germany (beate.michalzik@uni-jena.de), (2) Departments of Geography and Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA, (3) Office of Landscape, Agriculture and Environment, Canton of Zurich, Walcheplatz 2, 8090 Zurich, Switzerland, (4) Karlsruhe Institute of Technology (KIT), Institute of Geography and Geoecology, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany, (5) Chair of Soil Science, Department of Ecology, Technical University of Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany, (6) Institute of Soil Science and Soil Conservation, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related ($R^2 = 0.40$, $p < 0.001$) to the silvicultural management intensity indicator (SMI) developed by Schall and Ammer (2013). The SMI combines tree species, stand age and aboveground living and dead woody biomass, thereby allowing the quantifying of silvicultural management intensities of stands differing in species composition, age, silvicultural system as they convert from one stand type into another. Throughfall fluxes of particulate organic C and N (POC and PN) and dissolved N were, however independent from those forest structural metrics as well as annual C and N stemflow fluxes, which varied greatly among management intensity classes. In this context, we suggest that canopy structure metrics are more important drivers of water and matter stemflow dynamics, than structural metrics on the level of forest stands. On the other hand, leaching losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.