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The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on
the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood.
Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar
to the recycled oceanic crustal component observed in oceanic basalts [1–6]. These pyroxenites hence provide an
exceptional opportunity to investigate in situ the nature and scale of the Earth’s mantle chemical heterogeneities.

Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain)
and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample,
bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content,
we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic
signatures. Group A pyroxenites (Al2O3: 15 – 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high
143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group
B pyroxenites (Al2O3 < 14 wt. %) have isotopic signatures characterized by relatively high initial 87Sr/86Sr
and low 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios. Group C pyroxenites (Al2O3 ∼ 15 wt. %) display
relatively low initial 87Sr/86Sr and 206Pb/204Pb ratios, high 143Nd/144Nd and 176Hf/177Hf ratios, and 207Pb/204Pb
and 208Pb/204Pb ratios similar to Group B pyroxenites.

The major and trace element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet
pyroxenites lend support to the “Marble Cake Mantle” model [7] for the genesis of these pyroxenites. This model
envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented
by garnet pyroxenites in orogenic peridotites—- intimately mixed with peridotites by mantle convection. The
present study reveals, however, that besides this exotic component of ancient recycled oceanic crust, the genesis
of these pyroxenites requires a previously unnoticed component of recycled lower continental crust akin to the
lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in. The results of this
study provide a new recipe for the marble cake hypothesis for the genesis of UHP garnet pyroxenites in orogenic
peridotites. Furthermore, it establishes a connection between the genesis of UHP pyroxenites, the composition of
the continental crust and the generation of Earth’s mantle heterogeneities.
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