

Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure

Thomas Zilla (1), Bridith Angulo-Schipper (2), Juan Carlos Méndez (3), Michaela A. Dippold (2), Yakov Kuzyakov (1,2), and Sandra Spielvogel (4)

(1) Soil Science of Temperate Ecosystems, University of Goettingen, Goettingen, Germany, (2) Agricultural Soil Science, University of Goettingen, Goettingen, Germany, (3) Soil Quality, Wageningen University, Wageningen, Netherlands, (4) Soil Science, University of Bern, Bern Switzerland

Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. *F. sylvatica*-bearing rhizotrons were labeled with $^{33}\text{PO}_4$, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved ^{33}P -PLFA method, linking ^{33}P incorporation in microbes with changes in microbial community structure in soils *in situ*.

The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used $^{33}\text{PO}_4$ in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization – an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P sources with low bioavailability.

These novel insights into the effects of spatial P distributions on forest soil community dynamics will hopefully shed further light on microbial P cycling, thereby helping to tackle the impending global P crisis!