

Seasonal and diurnal methane emissions from a wetland meadow on the Eastern Qinghai-Tibetan Plateau: effects of soil temperature, water table level and gross primary productivity (GPP)

Haijun Peng (1), Qian Guo (1,2), Bing Hong (1), Hanwei Ding (1,2), Chao Xu (1,2), Hu Yao (1,2)
(1) Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Environmental Geochemistry, Guiyang, China (penghaijun@mail.gyig.ac.cn), (2) University of Chinese Academy of Sciences

Peatlands covered about 4.6×10^9 m² land surface of the eastern Qinghai-Tibet Plateau, and accumulated about 7.14×10^8 t C since the beginning of Holocene. Over the last decades, more than 30% of these peatlands have degradated due to climate change, land management and disturbance. For assessing the magnitude of diurnal and seasonal variations in CH_4 fluxes, and identifying the depence of CH_4 fluxes on environmental factors, we measured CH₄ fluxes in a typical alpine peatland in this region using eddy covariance technique, and tested the depence of CH₄ fluxes on soil temperature, water table level and gross primary productivity (GPP). The annual CH₄ emission of Hongyuan peatland is 47.04 g CH_4/m^2 , while growing season emissions account for 75 of the annual sum. During growing season, there was a clear diurnal pattern in CH₄ fluxes with peaks and valleys appeared at16:30 and 1:00, respectively. While during non-growing season, CH₄ fluxes varied at a relatively low level and showed no clear diurnal patterns. The CH₄ fluxes were significantly correlated with the variations of soil temperature, and soil temperature at 25 cm depth can explain 83% of the variations in CH₄ fluxes. The CH₄ emissions during the growing season were barely correlated with the water table level (R^2 =-0.0001), and the water table mostly varied from 0 cm to -20 cm, which indicate that the anaerobic environment below -20 cm was relatively stable for methanogenesis and CH₄ transportation. In addition, considering the fact that CH₄ fluxes were more significantly correlated with soil temperature at 25 cm depth, it might be concluded that the CH₄ were mostly produced in the peat deposits below -20 cm. The daily mean CH₄ emissions were significantly correlated with GPP $(R^2=0.82)$, which suggest that CH₄ emissions were also regulated by plant growth activities, and the CH₄ fluxes might be decreased due to peatland degradation.