

## Lightning impact on micro-second long ionospheric variability

Kuang Liang Koh, Zhongjian Liu, and Martin Füllekrug  
University of Bath, United Kingdom (k.koh@bath.ac.uk)

Lightning discharges cause electron heating and enhanced ionisation in the D region ionosphere which disturb the transmission of VLF communications [Inan et al., 2010]. A disturbance of such nature was measured in a VLF transmission with a sampling rate of 1 MHz, enabling much faster ionospheric variability to be observed when compared to previous studies which typically report results with a time resolution >5-20ms.

The disturbance resembles “Long Recovery Early VLF” (LORE) events [Haldoupis et al. 2013, Cotts & Inan 2007]. LOREs exhibit observable ionospheric effects that last longer (>200s) than other lightning related disturbances. It was proposed that the mechanism behind the long-lasting effects of LOREs is different to shorter events [Gordillo-Vázquez et al. 2016].

The ionospheric variability inferred from the transmitted signal is seen to change dramatically after the lightning onset, suggesting that there are fast processes in the ionosphere affected or produced which have not been considered in previous research. The ionospheric variability inferred from the main two frequencies of the transmission is different. A possible explanation is a difference in the propagation paths of the two main frequencies of the transmission [Füllekrug et al., 2015].

### References

Inan, U.S., Cummer, S.A., Marshall, R.A., 2010. A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges. *J. Geophys. Res.* 115, A00E36. doi:10.1029/2009JA014775

Cotts, B.R.T., Inan, U.S., 2007. VLF observation of long ionospheric recovery events. *Geophys. Res. Lett.* 34, L14809. doi:10.1029/2007GL030094

Haldoupis, C., Cohen, M., Arnone, E., Cotts, B., Dietrich, S., 2013. The VLF fingerprint of elves: Step-like and long-recovery early VLF perturbations caused by powerful ±CG lightning EM pulses. *J. Geophys. Res. Space Physics* 118, 5392–5402. doi:10.1002/jgra.50489

Gordillo-Vázquez, F.J., Luque, A., Haldoupis, C., 2016. Upper D region chemical kinetic modeling of LORE relaxation times: KINETIC MODEL OF LORE RELAXATION TIMES. *Journal of Geophysical Research: Space Physics* 121, 3525–3544. doi:10.1002/2015JA021408

Füllekrug, M., Smith, N., Mezentsev, A., Watson, R., Astin, I., Gaffet, S., Evans, A., Rycroft, M., 2015. Multipath propagation of low-frequency radio waves inferred from high-resolution array analysis. *Radio Sci.* 50, 2015RS005781. doi:10.1002/2015RS005781