Modelling last glacial cycle ice dynamics in the Alps

Julien Seguinot (1), Guillaume Jouvet (1), Matthias Huss (1), Martin Funk (1), and Frank Preusser (2)
(1) Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Switzerland (seguinot@ vaw.baug.ethz.ch), (2) Institute of Earth and Environmental Sciences-Geology, University of Freiburg, Germany

The European Alps, cradle of pioneer glacial studies, are one of the regions where geological markers of past glaciations are most abundant and well-studied. Such conditions make the region ideal for testing numerical glacier models based on approximated ice flow physics against field-based reconstructions, and vice-versa.

Here, we use the Parallel Ice Sheet Model (PISM) to model the entire last glacial cycle ($120-0 \mathrm{ka}$) in the Alps, with a horizontal resolution of 1 km . Climate forcing is derived using present-day climate data from WorldClim and the ERA-Interim reanalysis, and time-dependent temperature offsets from multiple paleo-climate proxies, among which only the EPICA ice core record yields glacial extent during marine oxygen isotope stages 4 ($69-62 \mathrm{ka}$) and 2 ($34-18 \mathrm{ka}$) in agreement to geological reconstructions.

Despite the low variability of this Antarctic-based climate forcing, our simulation depicts a highly dynamic ice cap, showing that alpine glaciers may have advanced many times over the foreland during the last glacial cycle. Cumulative basal sliding, a proxy for glacial erosion, is modelled to be highest in the deep valleys of the western Alps. Finally, the Last Glacial Maximum advance, often considered synchronous, is here modelled as a time-transgressive event, with some glacier lobes reaching their maximum as early as 27 ka , and some as late as 21 ka . Modelled ice thickness is about 900 m higher than observed trimline elevations, yet our simulation predicts little erosion at high elevation due to cold ice conditions.

