

Crustal xenoliths in post-collisional Variscan lamprophyres: records of late Variscan collision and orogenic extension

Christian Soder (1), Thomas Ludwig (1), Winfried Schwarz (1,2), Mario Trieloff (1,2) (1) Institut für Geowissenschaften, Universität Heidelberg, Germany (Christian.Soder@geow.uni-heidelberg.de), (2) Klaus-Tschira-Labor für Kosmochemie, Universität Heidelberg, Germany

Crustal xenoliths entrained in post-collisional shoshonitic lamprophyres from the Variscan Odenwald (Mid-German Crystalline Zone, MGCZ) include felsic granulites (garnet, quartz, plagioclase, K-feldspar, biotite, omphacite, rutile) and basaltic eclogites (omphacite, garnet, quartz, kyanite, phengite, epidote, rutile). Classical thermobarometry, Zr-in-rutile thermometry and equilibrium phase diagrams reveal temperatures of 700–800°C and pressures of 1.7–1.8 GPa. Both lithologies record isothermal decompression resulting in partial melting at still elevated pressures (1.3–1.5 kbar) before entrainment into the magma. The development of diverse fine-grained microstructures is linked to the interaction with the rising melt.

The eclogitic garnet preserves compositional sector zonation patterns, which indicate rapid crystal growth, shortly followed by overgrowth/recrystallization during decompression. The preservation of these zonation patterns indicates crystallization immediately before the lamprophyre magmatism. These findings are supported by SIMS U-Pb dating of zircon rims, which gave ages of 330 ± 3 Ma for both lithologies, indistinguishable from the published age of lamprophyre emplacement. Therefore, the xenoliths are a unique document of the late Variscan collisional process with marked crustal thickening to \sim 60 km and a subsequent decompression event.

Magmatic protolith ages are \sim 430 Ma for the basaltic eclogite and \sim 2.1 Ga for the felsic granulite. Silurian magmatism is well established within the MGCZ while the Paleoproterozoic age represents a hitherto unknown magmatic event.