The section is the section of the se

Geoffrey Bessardon¹, Barbara Brooks ^{1,2}, Victoria Smith ^{1,2}, Jeffrey Aryee ³, Kwabena Fosu-Amankwah³, Fred Cayle-Aethelhard³, Leonard Amekudzi³, and Sylvester Danuor³

Introduction

- Most nights of the summer monsoon are characterized by the formation of low-level continual stratus and strato-cumulus
- The formation of low-level stratiform clouds during the night at the Guinea Coast is connected with the occurrence of Nocturnal Low Level Jet (NLLJ)
- The questions of the formation of an NLLJ in southern west Africa SWA and the presence of clear nights with an NLLJ remain unclear
- We use data from the Kumasi supersite to study 3 different cases

SODAR and microwave radiometer observations • 2nd of July: humid cold front arriving in the first part of the night with a NLLJ forming at the beginning of the night - 400

Time (UTC)

(00)

 (\mathbf{i})

for horizontal wind (upper panel) from sodar, relative humidity (colours) and absolute humidity (contours g.m⁻³) from radiometer (lower panel)

- 1 Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom,
- 2 National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom,
- 3 Department of Physics, Kwame Nkrumah University Of Science and Technology, Kumasi, Ghana

Measurement period 11 June-30 July 2016

ain	Scanning Microwave Radiometer	Cloud camera	Energy balance station	Sun photomer
MRR-	Radiometer Physics HATPRO	outdoor HD Pro	CR 5000 logger, 6 x Campbell HFP01 Self calibrating Heat Flux Plates, 6 x Campbell 107 Temperature Probe, 6 x Campbell 253 Soil Matric Potential Sensor METEK uSonic-3, LI-COR LI-7500	Cimel sunphotometer
ation ⁄ity	P, T, RH, Integrated water vapour, liquid water path	Camera images	H20 C02 fluxes, Soil temperature, Radiative components, Flux components	Aerosol properties

Conclusions

- formation
- ERA-I underestimates the NLLJ

References and Acknowledgements

Schuster, R., Fink, A.H. & Knippertz, P., 2013. Formation and Maintenance of Nocturnal Low-Level Stratus over the Southern West African Monsoon Region during AMMA 2006. *Journal of the Atmospheric Sciences*, 70(8), pp.2337–2355. Schrage, J.M. & Fink, A.H., 2012. Nocturnal Continental Low-Level Stratus over Tropical West Africa: Observations and Possible Mechanisms Controlling Its Onset. Monthly Weather Review, 140(2007), pp.1794–1809. Adler, B., Kalthoff, N. & Gantner, L., 2016. The life cycle of nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations. *Atmospheric Chemistry and Physics Discussions*, 2016, pp.1–21. DACCIWA has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under the Grant Agreement no. 603502.

Contact: eegb@leeds.ac.uk

200 km north-West from Accra 180 km north from the Guinea Gulf 40 km South-west from the Kwahu Plateau (~500 m elevation)

ERA-I

Orographic map of Kumasi and

its surrounding

represents well the shape of the NLLJ profile

However it underestimates the wind speed

3 interesting clouds situations have been identified • The NLLJ behaves differently in this 3 cases The NLLJ strength does not seem to affect cloud

• Fluxes estimates and turbulence evaluation from the energy balance station are under investigation

