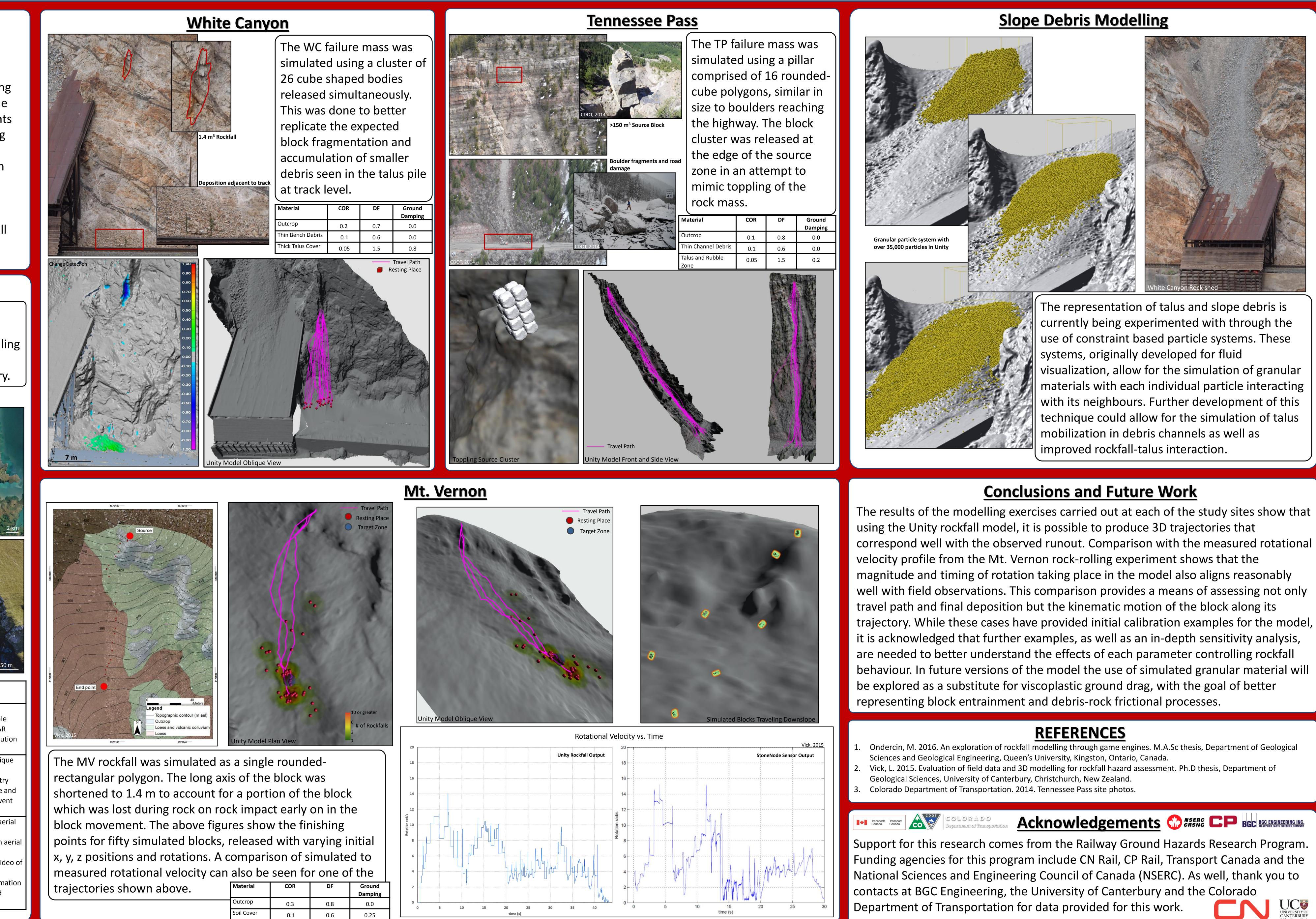


Rockfall is a geological process that poses risks to the safe operation of transportation corridors in mountainous environments world wide. The Unity rockfall model was developed as part of the Railway Ground Hazards Research Program, leveraging high resolution 3D data to study geotechnical hazards along Canadian railways. The original goal of the Unity model was to demonstrate the capability of 3D video game engines for the realistic simulation of rockfall events (Ondercin, 2016). Further development of the Unity model is currently ongoing with a focus on model calibration from event case studies. In order to characterize the risk posed by rockfall at a given site, rockfall modelling is often carried out attempting to quantify potential block trajectories and impact energies. The use of a given model requires model calibration, showing the suitability of the model for accurately representing rockfall processes. The purpose of this work is to showcase the ability of the model to simulate rockfall runout at three different sites with variable slope conditions and release mechanisms.

Study Sites

The three different sites considered for this study were the White Canyon, Tennessee pass, and Mt. Vernon. Each of these sites presents a different combination of slope geometry and surface materials. The data used for modelling at each of the sites was collected using a variety of remote sensing techniques including aerial and terrestrial LiDAR scanning, as well as aerial photogrammetry.

CC



Site	Location	Source Characteristics	Runout	Slope Conditions	Data Collection
White Canyon	South-central British Columbia, Canada	Irregular elongate shaped block sourced from jointed rock mass on near-vertical face. Approximate Dimensions (m): 4.5 x 1.1 x 0.3	Distance: 8 m Angle: 68°	Near-vertical jointed rock faces with mid- slope bench and piles of accumulated talus at track level.	 Sequential centimeter scale terrestrial LiDAR Gigapixel resolution site photos
Tennessee Pass	Central Colorado, United States	Pseudo-rectangular pillar standing on detached, failing rock mass. Toppling or sliding mechanism expected. Approximate Dimensions (m): 11.0 x 3.5 x 4.0	Distance: 342 m Angle: 65°	Steep gullied topography with talus filled debris channels, outcropping rock and sparse tree cover.	 Sequential oblique aerial photogrammetry Site photos pre and post rockfall event
Mt. Vernon	Rapaki Bay, Canterbury region, New Zealand	Pseudo-elliptical block released from source-socket using airbag and crowbars. Approximate Dimensions (m): 1.7 x 1.0 x 0.8	Distance: 140 m Angle: 30°	Steep outcropping source zone with comparatively shallow lower slope. Lower slope substrate is a mix of loess colluvium and soil with grassy scrub cover.	 1 m resolution aerial LiDAR 0.1 m resolution aeria imagery Multi-vantage video o rockfall event Kinematic information from embedded rockfall sensors

Application of the Unity Rockfall Model to Variable Surface Material Conditions

Zac Sala (zac.sala@queensu.ca), D. Jean Hutchinson, Matthew Ondercin Queen's University, Kingston, ON

1. 2. 3.	Onde Scien Vick, Geolo Color
1+1	Transports Canada
Su	ppoi

