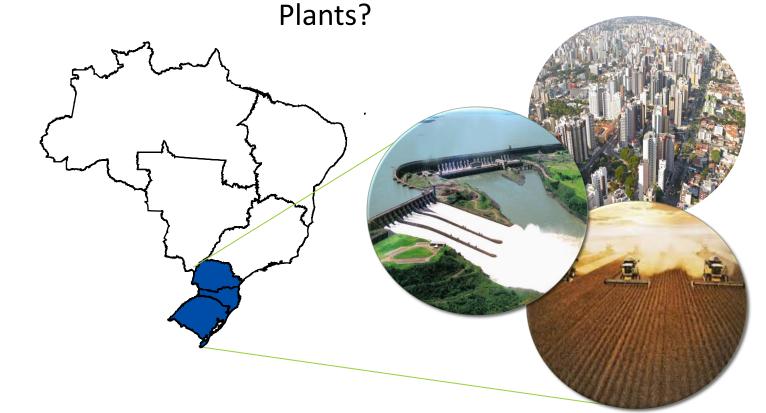


Flood Frequency Analysis Under Non-stationarity Conditions: the case of Southern Brazilian Hydroeletric Power Plants

Authors

Daniel Bartiko



Justification

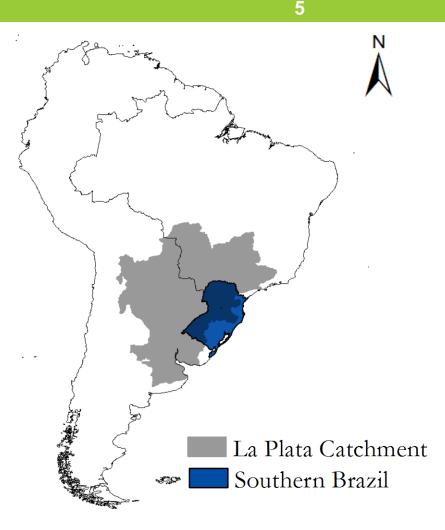
What are the consequences of nonstationarity in frequency analysis of high flows affluent to Southern Brazilian Hydroeletric Power

Justification

Land use and climate changes in Southern Brazil

Extreme highflows are more frequent and intense

How have we dealt with these changes in flood frequency analysis?


Iguazu Falls – Record Flow – June/2014

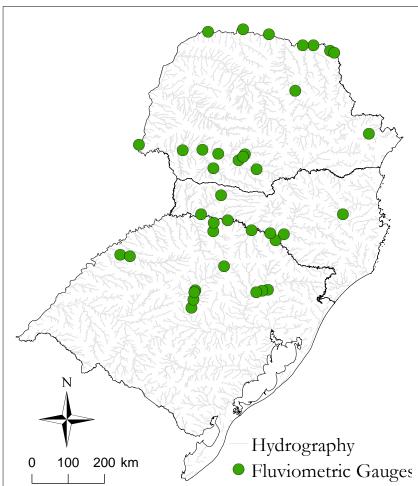
46.000 m³/s

MATERIAL AND METHODS

Study Area – Southern Brazil

- 🗸 La Plata Basin
- ~ 29.000.000 inhabitants (2014)
- ✓ 575.316 km² 6.76% of Brazil total
- ✓ 26.9 % of total installed hydroeletric power generation capacity on Brazil – 25.121 MW
- Intense industrial and agricultural activities

Hydrological Data


38 fluviometric series Brazilian National Grid Operator (ONS)

> Maximum size possible 43 to 84 years

From each year of the original series Maximum daily streamflow

Missing values

If percentage of missing values registered in the years corresponding to the 40% lower values of maximum annual daily streamflow series was ≥ 30%, the series was discarded

6

Nonstationary Frequency Model

Vogel, Walter and Yaindl (2011)

$$x_p = \exp[\mu_y + z_p \sigma_y]$$

$$+$$

$$\mu_y(t) = \bar{y} + \hat{\beta}(t - \bar{t})$$

LN Probability Distribution

Log-Linear Trend Model

$$x_p(t) = exp\left[\overline{y} + \hat{\beta}\left(t - \frac{n+1}{2}\right) + z_p s_y\right]$$

Nonstationary Frequency Model

Evaluated premises

Slope Trend Model – Student's t-test

Residuals of the linear trend model

Normality – Anderson-Darling test

Independence – Durbin-Watson

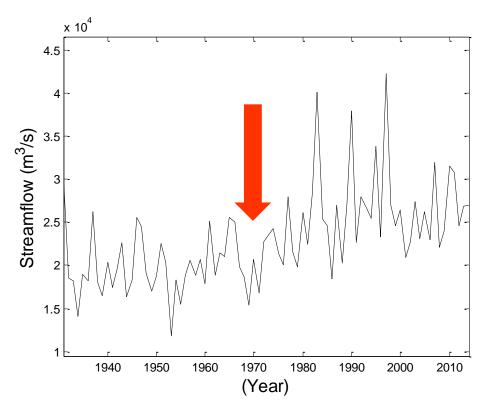
Homocedasticity – Breusch-Pagan

• Level of significance p<0.05 was used fo all tests

Recurrence Reduction

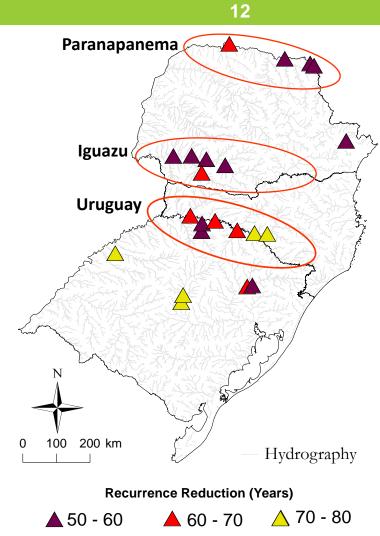
Average time (T_f) between floods in some future year t_f associated with the flood with an average recurrence interval of T_0 in some reference year t_0 .

Vogel, Yiandl and Walter(2011)

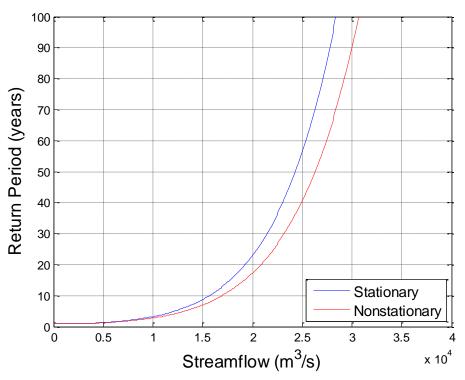

We adopted a planning horizon (tf - t₀) equal to 10 years

RESULTS AND DISCUSSIONS

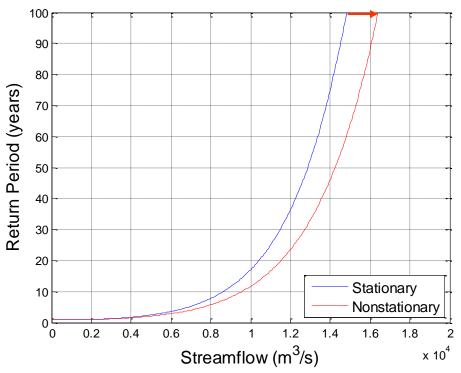
There is a different behaviour in the streamflow series after 1970


Itaipu Dam Inflow

> 22 of 38 series are nonstationary

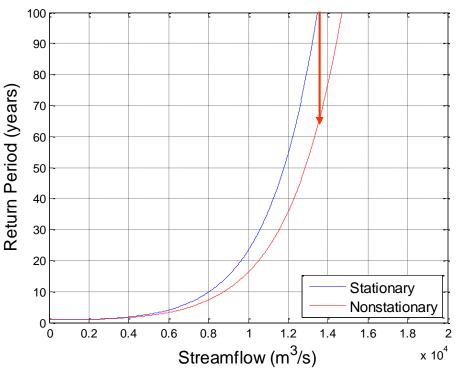

- In just a decade, the Return Period of a high flow estimated as 100 years changes from 50-77 years in nonstationary condition
- The nonstationary series are concentrated mainly in Iguazu, Paranapanema and Uruguay basins.

Itá Uruguay River


There is a significant difference between stationary and nonstationary frequency curves

Salto Osório Iguazu River

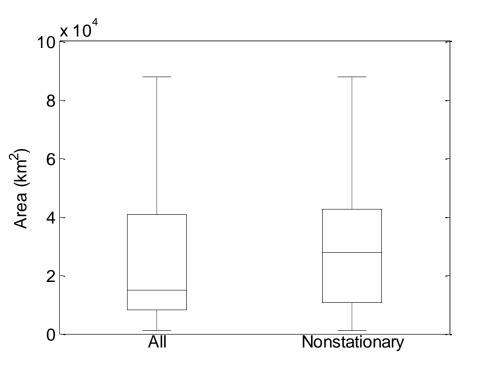
A 100 year flood ranges from ~14.800 m³/s to ~16.400 m³/s in only ten years horizon



13

Taquaraçu Paranapanema River

A flood estimated as 100 years in stationary model changes to ~ 65 years in nonstationary model



For a project lifetime equal to 50 years, the risk of failure changes from 40% to 54%, in just a decade.

Nonstationary, area and regularization basin

Nonstationary series are slight concentrated in basins of greater area

20 of 22 series are from gauges that have upstream regulation

Possible drivers?

Similar pattern between streamflow and precipitation series

Detzel and Mine, 2014

Changes in the El Niño-Southern Oscillation and Pacific Decadal Oscillation behaviour after 1970. There are relations between climatic indexes and presence of streamflow increase trends in Southern Brazil

Carvalho et al., 2014; Doyle and Barros, 2011; Alves, Souza Filho and Silveira, 2013; Silva, Naghettini and Portela, 2016; Silva et al., 2015

Land use change in lesser importance

Doyle and Barros, 2011

CONCLUSIONS

CONCLUSIONS

- ✓ Nonstationarity are present in Southern Brazil Hydroeletric Power Plants Inflow series.
- There is a great difference between return periods and frequency curves calculated by stationary and nonstationary models.
- ✓ Due to the limited number of data, it is not possible conclude about the relation between nonstationarity, basin area and regulation.
- ✓ The most accepted drivers for changes in streamflow series are related to climatic factors.
- ✓ We need to take into account the nonstationarity approach when evaluated risks of the large hydraulic structures, since there is a significant increase for nonstationary conditions.

Thank you so much!

danielbartiko@hotmail.com