

MOHAMMED BIN RASHID SPACE CENTRE

Atmospheric and Space Phys niversity of Colorado Boulder

M. AlShamsi, Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE, **M. Wolff,** Space Science Institute (SSI) in Boulder, CO, USA, **M. Khoory** Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE, A. Jones, G. Drake, and the EXI Team Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, CO, USA.

Emirates Mars Mission [EMM]

- EMM is the first outer-planetary Arab mission to be launched by 2020.
- The mission focuses on developing national capabilities in both science and engineering within the UAE, and on contributing with novel science to the human knowledge and civilizations.

EXI Science Operations

• EMM science orbit enables comprehensive observations of the exosphere, and full sampling of latitude, longitude, and local time.

Table 1: EMM Science Questions And Objectives

	1		1	EMM Science Investigations
Motivating Questions		EMM Science Objectives	 ,	ENTRI SCIENCE INVESTIGATIONS
How does the Martian		A. Characterize the state of the		1. Determine the three-dimensional thermal
lower atmosphere		Martian lower atmosphere on		state of the lower atmosphere and its diurnal
respond globally,		global scales and its geographic,	\backslash	variability on sub-seasonal timescales.
diurnally and seasonally		diurnal and seasonal variability		
to solar forcing?			/ ,	2. Determine the geographic and diurnal
How do conditions		B. Correlate rates of thermal		distribution of key constituents in the lower
throughout the Martian		and photochemical atmospheric		atmosphere on sub-seasonal timescales.
atmosphere affect rates of		escape with conditions in the		3. Determine the abundance and spatial
atmospheric escape?		collisional Martian atmosphere.		variability of key neutral species in the
II and the lease as the state	-	C. Cleans staning the substici		thermosphere on sub-seasonal timescales.
How do key constituents		C. Characterize the spatial		4. Determine the three-dimensional structure
in the Martian exosphere		structure and variability of key		and variability of key species in the
behave temporally and		constituents in the Martian		exosphere and their variability on sub-
spatially?		exosphere.		seasonal timescales.
]	

EXI Science Targets

Determine the geographic and diurnal distribution of key constituents in the lower atmosphere on sub-seasonal timescales.

This investigation will help in better understanding the processes that are driving the global circulation in the current Martian climate by sampling key constituents (dust, water ice clouds and ozone) in the lower atmosphere on sufficient spatial and temporal scales. EXI will be able to capture the ice optical depth, dust optical depth as well as the column abundance of ozone.

Figure 1: EMM Target Science Orbit

- 20,000km x 43,000
- 25° inclination
- 55 hour orbital period
- The Science Phase is planned for 2 Earth years (just over 1 Mars year long) to cover all the seasonal variations in the atmosphere.

Table 4 EXI Observational Strategy

Observatio n Strategy	Observation Strategy Set
EXI OS 1 (science)	 4 Contemporaneous images 220 nm, 260 nm, 320 nm, 635 nm Incident <80°; emergence < 70° 2 x 2 pixel binning (≤ 0.19 mrad spatial resolution) 2 dark images (for each detector)
EXI OS 2 (science)	 4 Contemporaneous images 220 nm, 260 nm, 320 nm, 635 nm Incident <80°; emergence < 70° 16 x 16 pixel binning (≤ 0.49 mrad spatial resolution) 2 dark images (for each detector)
EXI OS 3	3 Contemporaneous visible images

Table 1 EXI physical parameters and their observable requirements

Physical parameter	Observable Quantity	Observable Quantity Requirement
Ice column- integrated optical depth	radiance at 300-340nm	Radiometric accuracy ≤ 5% (± 0.03 optical depth)
Dust column- integrated optical depth	radiance at 205-235nm	Radiometric accuracy ≤ 5% (± 0.1 optical depth)
Ozone column- integrated abundance	radiance at 245-275nm	Radiometric accuracy ≤ 5% (± 0.5µm-atm)

Implementation Overview

EXI is a multi-band, radiation tolerant camera capable of taking 12 megapixel images while maintaining the radiometric calibration needed for detailed scientific analysis.

- Dual lens assembly separating the UV and VIS optical paths.
- Selector wheel mechanism consisting of 6 discrete bandpass filters. •

Table 2 EXI Instrument Specifications

Specification	UV	VIS		
Focal Plane Format	12.6MP 4:3 format 4096x3072 @ 5.5um			
Technology	CMOS			
Dynamic Range	12-bit 13,500 e full well			
Lens System	48 mm, f/3.6	51 mm, f/4.25		
Field of View	19.0°	25.8° by 19.2°		
Pixel Angular View	23 arcsec per pixel	22 arcsec per pixel		
Plate Scale	0.85 mm/º	0.90 mm/º		
Distortion @ 9.35°	+6%	-2%		
Ground coverage at Apoapsis	Full disk			
Ground resolution at Apoapsis	4.9 km per pixel	4.6 km per pixel		
Ground coverage at Periapsis	Full disk			
Ground resolution at Periapsis	2.3 km per pixel	2.2 km per pixel		
Filter Spectral Bands	UV1: 205 – 235 nm UV2: 245 – 275 nm UV3: 305 – 335 nm	Blue: 427 – 447 nm Green: 536 – 556 nm Red: 625 – 645 nm		

• 437 nm, 546 nm, 635 nm

• Full resolution (≤ 0.11 mrad spatial resolution)

Data Completeness

(PR)

Table 5 EXI Coverage Requirement

Figure 2 EXI Coverage at Periapsis and Apoapsis

EXIX-OS1 and X-OS2 (perlapsis)	EXIX-OS1 and X-OS2 (apoapsis)
←19.2°→	←19.2°→
25.8°	
Ultra Violet (UV) Channel Visible (VIS) Channel	= 70° emission angle 16.0° disk at perlapse 7.7° disk at apoapse = R _M = 3396km 17.1° disk at perlapse 8.2° disk at apoapse

EXI Coverage Requirement

Diurnal requirement	In any given span of 10 days, the 4 three-hour intervals spanning 6am- 6pm local time are sampled with at least 80% coverage of longitude in: ≥ 3 local time intervals for all latitude equatorward of ±30° ≥ 2 local time intervals for all latitude equatorward of ±50° In any given span of 10 days, at least one in the 4 three-hour intervals spanning 6am-6pm local time is sample with at least 50% coverage of the longitudes for all latitude equatorward of ±80°
Geographic requirement	≥ 80% of the geographic area of Mars sampled more frequently than every 72 hours. Latitude ≤80°sampled more frequently than every 72 hours.
Seasonal requirement	Observations over 1 full Martian year (Goal: 20 of the 24 15° intervals of L_s sampled)