

Detection of shallow marine cumulus convection with airborne and spaceborne lidar systems over the tropical North Atlantic Ocean

M. Gutleben, S. Groß, F. Ewald, M. Wirth

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

EGU2017-15232

Motivation

- Differences in the representation of shallow marine convection (SMC) in global climate models lead to large differences in climate sensitivity estimates (Bony and Dufresne (2005)
- Cumulus clouds are often of smaller extent than grid spacing of General Circulation Models — parametrizations needed

Scientific questions:

- What are typical distributions of vertical and horizontal cloud extent in the subtropical Atlantic dry season and wet season?
- How accurate can CALIOP, a spaceborne lidar system, resolve small scale shallow cloud regimes in contrast to WALES?

NARVAL I – dry season

- Clean and very dry free troposphere in winter months
- Sharp moisture gradient at trade wind inversion (2000– 2500 m)

Figure: Temperature and relative humidity profiles from all dropped radiosondes during NARVAL I (shaded areas: Interquartile Range).

WALES vs. CALIOP

Figure: Distributions of differences in detected cloud top heights (CTH) from CALIOP and WALES from all underflights (shaded: 1σ).

Cloud Length / km - NARVAL I
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 >5

Time since overpass / sec

References

assessment of CALIOP. Geophys. Res. Lett., 34 (19).

Figure: Distributions of cloud top heights deduced from CALIOP measurements (a); Cloud length distributions derived from WALES and CALIOP measurements (b).

CALIOP measurements underestimate small cloud amount. This may be caused by missing information on the inter-profile region between two consecutive CALIOP lidar shots.

Bony and Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models,

Geophysical Research Letters, 32 | Esselborn et al., 2008: Airborne high spectral resolution lidar for measuring aerosol extinction

and backscatter coefficients. Appl. Opt., 47 (3) | Wirth et al., 2009: The airborne multi-wavelength water vapor differential

absorption lidar WALES: system design and performance. Applied Physics B, 96 (1) | Winker et al., 2007: Initial performance

Method and Instrumentation

WALES

- Combined DIAL and HSRL system onboard the German HALO aircraft
- Resolution: 15 m (vertical), ~40 m

Wirth et al. (2009), Esselborn et al. (2008)

- Backscatter Lidar on-board CALIPSO
- Resolution: 30 m (vertical), 330 m (horizontal)

Winker et. al. (2007)

This study: WALES HSRL measurements (532 nm) **CALIOP Backscatter Lidar measurements (532 nm)**

NARVAL II – wet season

- Moist and often aerosol loaded lower free atmosphere
- Weakly pronounced moisture gradient at trade wind inversion (1500 – 1800 m)

Figure: Temperature and relative humidity profiles from all dropped radiosondes during NARVAL II (shaded areas: Interquartile Range).

NARVAL campaigns

NARVAL I

- 10 to 20 Dec 2013 **dry season** 65 flight hours within 8 research
- 6 CALIOP underflights over the subtropical North Atlantic Ocean

NARVAL II

- 8 to 30 Aug 2016 wet season
- 85 flight hours within 10 research
- 5 CALIOP underflights over the subtropical North Atlantic Ocean

Cloud Statistics: NARVAL I vs. NARVAL II

- Threshold of BSR = 90 is defined for single layer cloud detection
- Decrease in cloud top height in wet season compared to dry season

Figure: Distributions of cloud top heights (a), cloud lengths (b) and cloud gap lengths (c) deduced from WALES measurements during **NARVAL I (red)** and **NARVAL II (green).**

Deutsches Zentrum für Luft- und Raumfahrt

Institut für Physik der Atmosphäre