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Background
Most reglementary monitorings are low-frequency (monthly) and 
water quality (WQ) indicators are subject to high uncertainties (Birgand 
et al., 2010, 2011)

E.U. Water Framework Directive relies on simple indicators of concen-
tration (Caverage, percentiles C50, C90, C95 over 1 year) to assess WQ status 
in streams and rivers

Most pollutant concentrations vary widely with changes in discharge 
on seasonal and event scales

9 C-Q relationships can be characterized but only two or three C-Q 
modalities are encountered for each WQ parameter (Moatar et al., 2017)

C-Q relationships are dispersed (non linearity, hysteresis cycles)

Questions
Could uncertainty in predicting WQ predictors be associated with 
C-Q type?

How to integrate uncertainty (dispersion) around predicted C-Q rela-
tionships into prediction of WQ predictors to improve performance 
and con�dence?

Methods
C-Q segmentation at median �ow to assess C-Q types

Link between uncertainties in WQ indicators and C-Q curves for 
di�erent sampling frequencies

Kernell �tting of probability density of regressions residuals to 
take into account dispersion around regression lines and build 
semi-synthetic high-frequency time series

Datasets
Daily suspended solids (SS), total phosphorus (TP) and soluble re-
active phosphorus (SRP), nitrate (NO3), total Kjeldahl nitrogen 
(TKN), dissolved silica, chloride, sulfate, and conductivity

18 tributaries of Lake Erie in the United States (Ohio Tributary 
Monitoring Program, Heidelberg University)

Watersheds areas = 11 to 19,000 km²,

Period of record = 1975-2016
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Results
Errors highly depended on C-Q types:

Bias on WQ indicator estimation increased with b50sup slope

Imprecision on WQ indicator estimation increased with lower sam-
pling frequency

High errors (> 50%) even whith intensive surveys (every 2 days)

Lower errors with C50than with other WQ indicators

C-Q “reconstruction” from low-frequency data reduces bias error on 
WQ indicator estimation but imprecisions are higher (except for C50)

Conclusions
Median concentration (C50) is the most robust indicator

Uncertainty in WQ indicators depends on C-Q type

C-Q “reconstruction” can be used to better assess C50 

Work in progress
Setting con�dence limits on WQ indicators depend-

ing on hydrological variability and C-Q relationships 
to reliably analyze long-term but low-frequency wa-

ter-quality series
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synth_log(Cinf(t)) = ainf + binf log(q(t)) + Kinf (residualsinf(t))

synth_log(Csup(t)) = asup + bsup log(q(t)) + Ksup (residualssup(t))
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