

Introduction

- Flocculated sediments (flocs) play an important role in determining the fate of contaminants and pollutants in rivers and estuaries¹.
- Despite this, their internal structure is poorly understood, due partly to a lack of quantification of internal constituents.
- Pore space has a crucial influence on factors such as settling rate and stability of the floc in the water column².
- In order to fully understand the effects of porosity, it must be measured on multiple scales (gross scale (mm); micro scale (μ m); and nano scale (nm)).

2 Method #1: LabSFLOC

- LabSFLOC is a settling column that facilitates video recording in order to collect settling data that can later be processed into settling velocity³. • In this instance, it was used to collect settling data in order to define the 'floc
- outer limits' of the pores present in the flocs.

3 LabSFLOC still image with pore limits (fig. 1)

¹Basuvaraj, M; Lishman, L; Liss, S.N (2012) Structural, Physicochemical and Microbial Properties of Flocs and Biofilms in Integrated Fixed-film Activated Sludge (IFFAS) Systems, Water Research 46, 5085-5101 ²Manning, A.J; Baugh, J.V; Spearman, J.R; Whitehouse, R.J.S (2010) Flocculation Settling Characteristics of Mud: Sand Mixtures,

References:

Ocean Dynamics 60, 237-253 ³Manning, A.J (2006) LabSFLOC – a laboratory system to determine the spectral characteristics of flocculating cohesive sediments, HR Wallingford Technical Report 156

Porosity Quantification in Flocs

A Multi-Scale Quantification of Pore Space in Flocculated Sediments

TJ Lawrence¹, KL Spencer¹, AJ Bushby², A Manning³

¹School of Geography, Queen Mary University of London, UK, ²SEMS, Queen Mary University of London, UK, ³HR Wallingford, UK

Pore space within the 'floc outer limits'

4 Method #2: micro-CT scan & Fiji processing

- In order to analyse a floc on the micro scale, a μ -CT scan was performed.
- in a resin block.
- Fiji's '3D object counter' and 'Analyze Particles' were applied to the resulting image stack.
- This produced fig. 3, and the '3D viewer' allowed fig. 2 to be rendered from both the original stack and the '3D object counter' result.

Fig. 3.	micro-CT slie
Measurement	number
statistics for	
'pore 1',	
including	
total area and	
length	
J	

68

69

70

71

72

73

74

• Before scanning, the sample underwent capture, staining, and was then set

Fig. 2.

3D rendering of a floc with integrated pore space overlain to indicate location within the floc.

'Pore 1'

Pore pixel Area (pix²)	Pore Length (longest axis) (μm)
29	58
48	71
62	77
59	78
45	76
29	48
13	28

5 Results LabSFLOC:

- scale (mm).

micro-CT:

- internal pores of the floc (fig.2).

- a 3D size and shape will be calculated.

Further work 6

- statistical representativeness.
- compared in this way.
- add a further scale of comparison to the overall dataset.

Contact details: Mr Tom Lawrence, School of Geography, Queen Mary University of London. Email: t.Lawrence@qmul.ac.uk

Acknowedgements: Project development and supervision: Prof. Kate Spencer, Dr Andy Bushby (both QMUL) Prof. Andrew Manning (HR Wallingford) Practical assistance in field and lab work: Dr. Jonathan Wheatland, Dr. Andy Bushby, Dr. Natalie Ludgate, Miss Lucy Diggens (all QMUL) Prof. Andrew Manning (HR Wallingford)

HR Wallingford Working with water

• The blue highlighted areas are a preliminary indication of a definition of the 'floc outer limits', within which the empty space is considered pore space. • This pore space can then be measured to provide porosity data on the gross

• The 3D rendering with superimposed pore spaces shows the locations of the

• These pores are unlike those identified in the LabSFLOC data, as they are isolated within the structure, however open pores can also be measured. • 'Pore 1' was identified in the image stack data and subsequently in the 'analyze particles' data which allowed size analysis to take place (fig.3). • The data shows the pore length in each slice of the image stack, from which

• Once the pore space is measured from the LabSFLOC image, it can be compared statistically to other measurements from other flocs to determine

• Similarly, the size and shape of the <u>open</u> pores in the micro-CT data can be

• These statistical datasets can then be compared to determine whether there is a significant variation between porosity measured at different scales. • Furthermore, nano-scale analysis using SEM imaging will be performed to