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Given the recent environmental policies derived from the serious threats caused by global change, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term. Development of tools for
quantification, assessment and management of organic carbon in ecosystems at different scales, it is essential to achieve these commitments. The two main carbon sinks in terrestrial ecosystems are soil and aboveground biomass.

Regarding this, FAO and GSP launched a global endeavor to develop national soil organic carbon (SOC) maps to support and contribute the Global Soil Organic Carbon map (GSOC map). In this regard, the state-of-the-art (Figure 1) study evaluates
strengths and weaknesses of the different current organic carbon assessment, which allows developing a specific national organic carbon map.

The aim of this study is to establish a methodological framework for the modeling of a tool (soil and biomass carbon), applied to a sustainable land use planning and management at national scale (Figure 2). The study area, Mediterranean ecosystem
in Iberian Peninsula, is considered one of the most uncertain areas regarding climate change due to their vulnerability.

Figure 1 " A State-of-the-Art Figure 2 Methodological framework: stock of soil organic carbon (SOC) combined with biomass of forest species
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