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Blocky structure of rocks

Blocky model of fractured reservoirs

The faults and/or filed fractures in the reservoir introduce a network, communicate hydraulically

between each other locally and globally, and provide overall conductivity (permeability) of the reservoir,

and the matrix provides overall storage capacity (porosity).

Dual-porosity reservoir model

Fractured reservoir Sugar cube representation

The picture is taken from

Warren J.E. and Root P.J. The behavior of naturally fractured reservoirs
SPE J., 3, 245–255, 1963.
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A blocky medium with elastic-plastic interlayers Elasticity

Equations of elastic blocks and elastic interlayers

Scheme of a blocky medium

A motion of each block is defined
by the system of equations of
a homogeneous isotropic elastic medium:

ρ v̇1 = σ11,1 + σ12,2

ρ v̇2 = σ12,1 + σ22,2

σ̇11 = ρ c21
(
v1,1 + v2,2

)
− 2 ρ c22 v2,2

σ̇22 = ρ c21
(
v1,1 + v2,2

)
− 2 ρ c22 v1,1

σ̇12 = ρ c22
(
v2,1 + v1,2

)
Elastic interlayer between the horizontally located nearby blocks is described by the system of equations:
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Elastic interlayer between the vertically located nearby blocks is modeled using similar system:
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A blocky medium with elastic-plastic interlayers Accounting for plasticity of interlayers

The case of elastic-plastic interlayers

To take into account the plasticity, constitutive equations of the vertical elastic interlayer are replaced
by the variational inequality:

(δσ
+
11 + δσ

−
11) ε̇

p
11 + (δσ

+
12 + δσ

−
12) ε̇

p
12 6 0

δσ±jk = σ̃±jk − σ
±
jk – variations of stresses

ε̇
p
11 =

v+1 − v
−
1

δ1
−
σ̇+
11 + σ̇−11
2 ρ′c′ 21

, ε̇
p
12 =

v+2 − v
−
2

δ1
−
σ̇+
12 + σ̇−12
2 ρ′c′ 22

– plastic strain rates

The actual stresses σ±jk and variable stresses σ̃±jk are subject to the constraint in the form:

f

(
σ̃+
11 + σ̃−11

2
,
σ̃+
12 + σ̃−12

2

)
6 τ(χ)

τ – the material yield point of interlayers, χ – a material parameter (or set of parameters) of hardening
f(σn, στ ) – the equivalent stress function, in which arguments are normal and tangential stresses

The simplest form of the constraint for a microfractured medium is as follows:
|στ | 6 τs − ks σn (τs and ks – the material parameters)

Constitutive equations of the horizontal elastic-plastic interlayer are formulated in a similar way
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A blocky medium with elastic-plastic interlayers Accounting for viscosity of interlayers

Poynting–Thomson viscoelastic model

To describe the viscous dissipative effects in the interlayers under the shear waves propagation, which
influence the solution in the long run, the Poynting–Thomson model of a viscoelastic medium is used.

a0

a1 η

Poynting–Thomson’s rheological scheme

Hooke’s law for elastic element: ε′12 = a0 (σ+
12 + σ−12)/2, ε′′12 = a1s12

Newton’s law for viscous element: η ε̇′′12 = (σ+
12 + σ−12)/2− s12 Total strain: ε12 = ε′12 + ε′′12

Constitutive equations of the interlayer:

a0
σ̇+
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2
+ a1 ṡ12 =
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−
2
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,
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2
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Energy balance equation:
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2
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2
1 ṡ

2
12, 2W = a0
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4
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2
12

according to which the power of internal stresses in the interlayer is the sum of
the reversible elastic strain power and the power of the viscous energy dissipation
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A blocky medium with elastic-plastic interlayers Accounting for porosity of interlayers

Model of porous interlayers

The longitudinal deformation of the interlayers is described on the basis of a complicated version
of the porous elastic model, which takes into account the nonlinear threshold behavior of a material
with the strength increasing during the collapse of pores.

b0

b1

Rheological scheme of a porous interlayer

Total strain: ε11 = σ′11/b1 + θ1 − θ0
σ′11 6 0 – stress in a rigid contact, θ0 > 0 and θ1 > 0 – initial and current porosity values

Governing relationships of a rigid contact: (σ̃11 − σ′11) θ1 6 0, σ̃11, σ
′
11 6 0

σ′11 = b1 π(θ0 + ε11), π(θ) = min(θ, 0) – projection onto the non-positive semi-axis

Constitutive equations of the interlayer including the equation for porosity:

ε̇11 =
v+1 − v

−
1

δ1
,

σ+
11 + σ−11

2
= b0 ε11 + b1 π(θ0 + ε11), θ1 = θ0 + ε11 − π(θ0 + ε11)

The energy balance equation:
σ+
11 + σ−11

2
ε̇11 = Ẇ , 2W = b0 ε

2
11 + b1 π

2
(θ0 + ε11)
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Fluid-saturated porous material

Modified Biot’s model
Under numerical modeling of the wave motion in a blocky medium containing fluid-saturated porous
interlayers, a version of the model is applied based on Biot’s approach.

Kinetic energy related to the initial unit of a volume of the horizontal interlayers:

2T = ρs
(v+1 + v−1 )2

4
+ ρa

(v+1 + v−1
2

− w1

)2
+ (ρs + ρf )

(v+2 + v−2 )2

4
+ ρf w

2
1

ρs, ρf – partial densities of a solid skeleton and a liquid phase in interlayers at the initial moment of time
ρa – density of additional mass used to take into account the mutual influence of fluid and skeleton
in the case of relative motion, w1 – absolute velocity of the fluid motion

Equations describing skeleton motion in the direction of longitudinal axis x1:

(ρs + ρa)
v̇+1 + v̇−1

2
− ρa ẇ1 =

σ+
12 − σ

−
12

δ2
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σ̇+
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2
+ a1 ṡ12 =
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−
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δ2
,

σ+
12 + σ−12

2
= s12 + η a1 ṡ12

Equations describing joint motion of the solid and liquid phase in the direction of transverse axis x2:

(ρs+ρf )
v̇+2 + v̇−2

2
=
σ+
22 − σ

−
22

δ2
, ε̇22 =

v+2 − v
−
2

δ2
,

σ̇+
22 + σ̇−22

2
= b0 ε̇22 + b1 π̇(θ0 + ε22) + bs w1,1

Equations describing the fluid motion along the interlayer:

(ρf + ρa) ẇ1 − ρa
v̇+1 + v̇−1

2
= s11,1, ṡ11 = bf w1,1 + bs ε̇22

s11 = −p θ – normal stress in the liquid phase, p – value of the pore pressure
θ – momentary porosity value, bs and bf – elastic moduli characterizing the interaction
in the system “solid skeleton–fluid”
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Fluid-saturated porous material

Kirchhoff’s law for nodes

To solve the systems numerically, the computational algorithm is developed.
The Godunov gap decay scheme is applied at the stage of approximation
of the equations for velocity w1 and stress s11 in a fluid.

w−1 θ
−
1 δ2 w+

1 θ
+
1 δ2

w+
2 θ

+
2 δ1

w−2 θ
−
2 δ1

Scheme of flows interaction

At junction zones of the horizontal and vertical
interlayers, the internal boundary conditions are set.

They result from Kirchhoff’s law for the fluid flow:

w
+
1 θ

+
1 δ2 + w

+
2 θ

+
2 δ1 = w

−
1 θ
−
1 δ2 + w

−
2 θ
−
2 δ1

and the dynamic equations:

s
±
11 = −p θ±1 , s

±
22 = −p θ±2

considering the pressure equality at a junction.

θ±1 and θ±2 – porosities in the horizontal
and vertical interlayers

In this formulation of the boundary conditions at
the junctions, the power balance equation is fulfilled:

s
+
11 w

+
1 δ2 +s

+
22 w

+
2 δ1−s

−
11 w

−
1 δ2−s−22 w

−
2 δ1 = 0

by which the thermodynamic consistency of
equations in the interlayers with governing
equations in the blocks can be proved.

Vladimir M. Sadovskii (ICM SB RAS) Waves Simulation in a Blocky Medium EGU2017 – 2811 26.04.2017 10 / 21



Parallel computational algorithm

Two-cyclic splitting

On the basis of discrete analogs of the equations in blocks and interlayers, the parallel computational
algorithm is developed for the analysis of waves propagation in a blocky media with porous fluid-saturated
interlayers on supercomputers of the cluster architecture. A suitable two-cyclic method of splitting with
respect to the spatial variables is applied, which has high accuracy and permits the efficient parallelization
of computations.

Governing equations in blocks and interlayers can be provided in the form of symbolic evolution equation:

U̇ = A1(U) + A2(U)

A1 and A2 – nonlinear differential-difference operators, simulating 1D motion of a blocky medium
in the direction of the coordinate axes x1 and x2, U – vector–function of unknown quantities
which includes the projection of the velocity vector and the stress tensor in blocks and interlayers

In such notations the method of splitting on the time interval (t0, t0 + ∆t) includes four steps:
the step of solving 1D equation in the x1 direction on the interval (t0, t0 + ∆t/2), a similar step of
solving the equation in the x2 direction, the step of recomputation in the x2 direction on the interval
(t0 + ∆t/2, t0 + ∆t) and the step of recomputation in the x1 direction on the same interval:

U̇(1) = A1(U(1)), U(1)(t0) = U(t0)

U̇(2) = A2(U(2)), U(2)(t0) = U(1)(t0 + ∆t/2)

U̇(3) = A2(U(3)), U(3)(t0 + ∆t/2) = U(2)(t0 + ∆t/2)

U̇(4) = A1(U(4)), U(4)(t0 + ∆t/2) = U(3)(t0 + ∆t)

The solution at the time instant t0 + ∆t equals to U(t0 + ∆t) = U(4)(t0 + ∆t)
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Parallel computational algorithm

Efficiency of parallelization

Described computational algorithm is implemented as the parallel program for analysis of the waves
propagation processes in blocky media under external dynamic loads on multiprocessor computer systems
of the cluster architecture. The parallelization is performed on the basis of domain decomposition – each
processor of a cluster expects a separate chain of blocks including the boundary interlayers in the horizontal
direction. The programming language is Fortran, and the message passing interface (MPI) library is used.

O 10 20 30 40 50 N

2

4

6

8

10

12

14

T [min]

Dependence of the runtime T on the linear dimension N of a grid in blocks
(circle points – actual computational time, solid line – semi-theoretical computational time)
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Results of computations

Instant rotation of the central block in the rock mass

The developed parallel program is applied to solve a series of problems related to the waves propagation
in a blocky medium under concentrated loads. The problem, in which the boundary effects around
a blocky medium are absent and the initial data for velocities correspond to the rotation of
the central block around the mass center at the assigned angular velocity ω0:

v1 = −ω0

(
x2 −

h2

2

)
, v2 = ω0

(
x1 −

h1

2

)
, 0 6 xk 6 hk (k = 1, 2)

is solved numerically. Initial stresses in the entire rock mass and initial velocities in the blocks,
except for the central block, are zero.

Averaged angular velocities and tangential stresses:

ω̄ =

h2∫
0

v2(h1, x2, t)− v2(0, x2, t)

2h1h2

dx2 −
h1∫
0

v1(x1, h2, t)− v1(x1, 0, t)

2h1h2

dx1

σ̄12 =

h1∫
0

σ12(x1, h2, t) + σ12(x1, 0, t)

2h1

dx1, σ̄21 =

h2∫
0

σ12(h1, x2, t) + σ12(0, x2, t)

2h2

dx2
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Results of computations

Instant rotation of the central block in the rock mass

δ = 0.1mm δ = 1mm δ = 5mm

Level curves of the angular velocity ω̄ depending on the thickness of interlayers

Level curves of the tangential stress σ̄21 depending on the thickness of interlayers

Size of each block is 50 mm x 50 mm
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Results of computations

Instant rotation of the central block in the rock mass

The circulation C of a fluid around blocks is calculated by the formula:

C =
δ1

h2

h2∫
0

(
w

+
2 θ

+
2 − w

−
2 θ
−
2

)
dx2 −

δ2

h1

h1∫
0

(
w

+
1 θ

+
1 − w

−
1 θ
−
1

)
dx1

w−2 θ
−
2 w+

2 θ
+
2

w+
1 θ

+
1

w−1 θ
−
1

Circulation of a flow around the block
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Results of computations

Instant rotation of the central block in the rock mass
δ = 0.1mm δ = 1mm δ = 5mm

The case of intensive load (with pore collapse)

Level curves of the fluid circulation C depending on the thickness of interlayers

The case of small load (without pore collapse)
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Results of computations

Instant rotation of the central block in the rock mass
δ = 0.1mm δ = 1mm δ = 5mm

The case of elastic interlayers

Level curves of the tangential stress σ̄21 depending on the thickness of interlayers

The case of elastic-plastic interlayers
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Results of computations

Instant rotation of the central block in the rock mass

Animations

The case of elastic interlayers

Different impedances of blocks and interlayers The same impedances of blocks and interlayers

δ = 8mm

Level curves of the tangential stress σ̄21
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Results of computations

Instant rotation of the central block in the rock mass

Animations

The case of fluid-saturated interlayers

δ = 2mm δ = 8mm

Level curves of the fluid circulation C around blocks
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Results of computations

Concentrated rotational moment at the boundary

δ = 0.1mm δ = 1mm δ = 5mm

Level curves of the tangential stress σ̄21 depending on the thickness of interlayers

Level curves of the fluid circulation C depending on the thickness of interlayers
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Conclusions

X The equations of a blocky medium with elastic blocks and interlayers, that have
different mechanical properties, are proposed.

X The Poynting–Thomson rheological model, which allows to take into account
viscous deformation, is used for describing the transverse waves propagation.

X The model of a porous medium is applied for the description of longitudinal waves.

X Thermodynamic consistence of the equations in interlayers with the system in blocks
guarantees fulfillment of the energy conservation law for a blocky medium.

X The numerical algorithm for solving proposed system is constructed and tested.

X The parallel program system is worked out, using the MPI technology.

X By means of this software, the nonlinear wave processes in the case of initial rotation
of the central block in a rock mass as well as in the case of concentrated couple stress
load, applied at the boundary of a rock mass, are analyzed.

This work was supported by the Complex Fundamental Research Program
no. II.2P “Integration and Development” of Siberian Branch of the Russian
Academy of Sciences (grant no. 0356-2016-0728).

Thank you for your attention!
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