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Despite the realism of precipitation forecasts from the non-hydrostatic Harmonie model (2.5 km resolution), they only perform similarly as precipitation fore-
casts from 2 lower resolution hydrostatic models (ECMWF with 16 km and Hirlam with 11 km resolution), at least in the Netherlands.

1 Introduction
Verification of localized events such as precipitation has become
even more challenging with the advent of high resolution meso-
scale numerical weather prediction (NWP). The realism of a fore-
cast suggests that it should compare well against precipitation
radar imagery with similar resolution, both spatially and tempo-
rally. Spatial verification methods solve some of the representativ-
ity issues that point verificationgives rise to. In this study a verifica-
tion strategy based on model output statistics is applied that aims
to address both double penalty and resolution effects that are in-
herent to comparisons of NWP models with different resolutions.
Thismethod, extensively described in [1], attempts toextract all rel-
evant characteristics (predictors) from the available precipitation
forecasts that have predictive potential for the probability of rain
(exceeding some threshold) at a location or area during a time in-
terval (predictand).

2 Data and method
2.1 Data

• Data availability: 2 years of ’summer’ days (April - October) from
August 2012 to July 2014

• The predictands are defined as follows:

– 3-hprecipitation sums at 7 SYNOP stations in TheNetherlands
(Fig. 1)

– areal mean and maximum 3-h precipitation sums from cali-
brated radar data in circles (with 5 and 25 km radii) around 7
SYNOP stations in The Netherlands (Fig. 1)

• The potential predictor groups are defined as follows:

– q: the exceedance threshold 𝑞,

– dmo: precipitation as given by the model at the closest grid
point to the station (direct model output),

– dist: predictors based on the (weighted) distance from the
station to the closest wet or dry grid point,

and within a disk of radius 𝑅 around a station, with 𝑅 = 25, 50,
75 and 100 km:

– max: the (square root of the) maximum areal precipitation,

– coverage: predictors based on the coverage of precipitation
(i.e. the percentage of the area covered by precipitation),

– total: the (square root of the) areal mean precipitation,

– weightmax: predictors based on the maximum precipitation
weighted by the distance to the station,

– weightint: predictors based on the precipitation integrated
over the area,weightedby anexponentially decaying function
from the station.

• Because predictors within 1 group are highly correlated, only 1
predictor from each group can be selected.

2.2 Method: Extended Logistic regression (ELR)

As our statistical post-processing method we have used Extended
Logistic Regression (ELR; [3]), where the threshold is also a predic-
tor so that the regression equation is a function of the threshold,
effectively yielding a complete probability distribution.
For a binary predictand 𝑦𝑖, here for an event with precipitation ex-
ceeding a threshold𝑞, we try to find the probability𝑝𝑖 as a function
of the threshold 𝑞 and the other predictors s ≡ [𝑠1,𝑖, 𝑠2,𝑖, …]𝑇 , ac-
cording to the nonlinear logistic equation

𝑝𝑖(s, 𝑞) =
exp(𝑏0 + 𝑏1𝑠1,𝑖 + 𝑏2𝑠2,𝑖 +…+ 𝑓(𝑞))

1 + exp(𝑏0 + 𝑏1𝑠1,𝑖 + 𝑏2𝑠2,𝑖 +…+ 𝑓(𝑞))
.

In this study, we have chosen a linear function of the threshold:
𝑓(𝑞) = 𝑎𝑞.
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Figure 1: Location of the stations on a map in the Netherlands: from north to south
Leeuwarden (LWD), Eelde (EEL), De Kooy (KOY), Marknesse (MKN), Amsterdam
Airport Schiphol (AMS), Eindhoven (EIN) and Maastricht (MST). Circles with a ra-
dius of 25 (green), 50, 75 and 100 km (grey) around each station are indicated (see
text).

3 Results
3.1 Selected predictors

In principle, each model may use very different predictors to
achieve the best correlation or highest skill given the restrictions
discussed in [2]. When we look at which predictor was selected
first for the different models (see Fig. 2 for precipitation measured
by SYNOP stations as predictand), we see that in general the large
scale predictors, such as the square root of the mean areal pre-
cipitation from the total group and coverage (the fraction of
the circular area where the precipitation exceeds 0.3 mm/3h) are
preferred. The threshold is always selected as the second predic-
tor. A predictor of the dist group is often picked third, indicating
the (relative) importance of the distance of the predicted precipi-
tation to the SYNOP station. Also, it is noteworthy that the predic-
tor based on the direct model output (dmo) is never selected before
the stopping criterion is met. Apparently, it contains no skilful in-
formation in addition to the selected predictors. This is in com-
plete agreementwith the fact that high resolution forecasts should
not be taken at face value but should be interpreted probabilisti-
cally. For predictands that involve maxima, such as the maximum
precipitation within a radius of 25 km (not shown), the predictors
from the max group are selected more often, as third or fourth pre-
dictor.
In Fig. 3 the distribution of the scales of the selected predictors is
given for the same four lead times and predictand as in Fig. 2. As
expected, there is a general tendency to select predictors on larger
spatial scales with increasing lead time. It is remarkable that even
for SYNOP observations as a predictand source and especially for
Harmonie, predictors defined on disks with a radius of 25 and 50
km are hardly selected.
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Figure 2: The distribution of the predictors (over the 30 different training peri-
ods; [2]) that were selected first (left) and the predictors that were selected when
the stopping criterion was met (right) for the SYNOP observations as predictand
source, for the lead times 18+006 to 18+024 UTC (limited area models) and 12+012
to 12+030 UTC (ECMWF) from top to bottom.
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Figure 3: As Figure 2 but for the distribution of the scales of the selected predictors.

3.2 Verification

Overall the Brier skill scores (BSS) for the 3 post-processed precipi-
tation forecasts are similar (Fig. 4), but larger differences are found
for individual lead times [2].
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a) Precipitation at SYNOP station
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b) Mean precip in 5 km radius disk
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d) Maximum precip in 5 km radius disk
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Figure 4: BSS for the three post-processed NWP models for three predictand types:
SYNOP observations (top), radar mean precipitation in circles with a radius of 5 and
25 km (middle) and radar maximum precipitation within circles with a radius of 5
and 25 km (bottom), averaged over all analysis and lead times, as a function of the
threshold, and tested on independent data. Boxes represent the 25 to 75 percentile
range or IQR with a line indicating the median. The whiskers (dashed lines) rep-
resent the 25th percentile minus 1.5 times the IQR and the 75th percentile plus 1.5
times the IQR, extending to the most extreme data point in this data range. The
plus signs indicate data outside these ranges.

4 Conclusion
When looking at the capability to estimate the probability of (the
mean or maximum) precipitation exceeding some threshold in a
point (an area), overall there appears to be only relatively small dif-
ferences in theBSSbetweenpost-processedHarmonie, Hirlamand
ECMWF model precipitation output using ELR, but the differences
are larger for individual lead times.
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