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Direct shear experiments in the Griggs-type apparatus
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Introduction
 As required for plate tectonics to occur, the deforma-
tion of the lithosphere needs to be localised across the stiff, 
viscous/ductile uppermost mantle1,2. In this latter, strain 
localisation originates from a restricted weakening that 
promotes strain rate to increase and grain size to reduce 
within a narrow zone, forming a so-called mantle shear 
zone. However, although many examples of mantle shear 
zone have been described in nature3-6, the source of 
mantle weakening and subsequent strain localisation 
remains very elusive. Using a solid-medium Griggs-type 
deformation apparatus, we here explore the deformation of 
mantle rocks at temperature, pressure and grain size that 
involve dominant diffusion creep in water-rich conditions. 
We further investigate on the role of pyroxene for strain 
localisation, which still remains poorly constrained. 
Deformation experiments have been performed in direct 
shear at 900°C and 1.2 GPa on a hot-pressed powder com-
posed of 70% olivine (forsterite91) and 30% clinopy-
roxene (diopside97) with selected grain sizes. We also 
deformed a pure olivine sample with the same conditions 
and grain size (~2 μm). For each experiment, we applied a 
bulk strain rate of 2.10-5 s-1 and we added 0.1 weigth % of 
distilled water.

Results
 For all samples, we record a peak of differential stress (σ1-σ3) followed by a substantial weakening 
until a plateau is reached (Strain - Stress curves). The more the CPx size is small, the more the weakening 
is important. At peak stress conditions, no strain is discernable. In contrast, the weakening stage is coeval 
with major strain localisation, giving rise to a well-developed shear zone with high-strain deformation (γ 
> 5; see BackScattered Electron (BSE) images). This excludes the pure olivine sample where deforma-
tion did not localise despite important weakening. While the presence of coarse-grained CPx (40-125 μ
m) promotes intense strain localisation through a shear zone of around 100 μm thick, the presence of 
fine-grained CPx (5-20 μm) produces a shear zone of around 300 μm thick. In both cases, the grain size 
highly reduces within very fine-grained layers that start from the CPx boundaries, and then extend 
through the olivine matrix. These layers are composed of well-mixed olivine and clinopyroxene grains 
(mixture) of around 0.1-0.2 μm grain size, as shown by 1) Transmission Electron Microscopy (TEM) 
images, and 2) microprobe analyses that indicate an intermediate composition between olivine and CPx. 
While TEM images on FIB (Focused Ion Beam) section show the presence of dislocations in the olivine 
matrix, only a granoblastic texture without any dislocation is observed for the mixture layers. The olivine 
matrix also characterizes by strain-induced cracks partly filled by new olivine grains, as well as straight 
boundaries that result from grain boundary sliding (GBS). In addition, the presence of mixture and fluid 
inclusions in mode-I cracks of CPx highlights the presence of a fluid phase, the mixture of which nuclea-
ted from. All samples have a weak olivine lattice preferred orientation (LPO), but some developed a typi-
cal B-type fabric with [001] axes in the shear direction and [010] axes normal to the shear plane.
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Phase nucleation induced
by creep cavitation

 The absence of olivine LPO or weak B-type fabric7 despite intense finite strain confirms that olivine aggre-
gates mostly deformed by diffusion creep. Although unexpected in this regime, our results show significant grain 
size reduction together with intense weakening, as well as strain localisation in presence of pyroxenes. The pres-
ence of mode-I cracks filled by phase mixture also shows that new phases result from phase nucleation. Indeed, 
1) the same nature of mineral phases that compose both the newly formed mixture and starting material, i.e., oli-
vine and CPx, precludes the occurrence of a net-transfer reaction, and 2) the olivine grain size ranges far below 
the predicted one by the olivine piezometer8 (deformation map9), excluding dynamic recrystallization to form 
these new grains, although it has been previously proposed10. In contrast, the presence of new grains and fluid 
inclusions in cracks of both CPx and olivine strongly suggest that grain size reduced as a result of solution 
transfer11. Our evidence of GBS-related cracks further suggests the occurrence of creep cavitation, i.e., a tran-
sient opening of micro-cavities where GBS cannot be fully accommodated by plastic or diffusional processes. 
We therefore propose creep cavitation and related phase nucleation as sources for grain size reduction and phase 
mixing. Because of dominant diffusion creep (see deformation map), this accounts for substantial weakeaning 
and related strain localisation, provided that secondary phases (pyroxenes) are present. Such a phase nucleation 
also accounts for an absent or weak olivine fabric as new grains appear with random orientations.

Discussion/conclusion
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