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1. Motivation and objectives

In the mountainous regions e.g. The TERrestrial ENvironmental Observatories (TERENO) pre-alpine region (Fig. 2), echohydrological processes exhibit rapid changes within short distances due to the complex orography and heterogeneity in topography, soiltype,
landuse, climate and land-atmosphere interactions (Fig. 3). Energy exchange between the land surface and the atmosphere is one of the most important processes in ecosystems. Therefore, the aims of this research are:
= to quantify the elevation-gradient variability of the water— and energy budgets using the hydrometeorological data analysis (including eddy covariance (EC) measurements) and a high-resolution hydrological modeling GEOtop,

= to estimate the dependence structures of the water— and energy variables using the empirical Copulas based on bivariate distribution.

3. Results

The manually-calibrated GEOtop outputs for the water- and energy fluxes as well as the empirical Copulas-
based dependence structures of the hydrometeorological variables are presented.

2. Methodology
2.1. The GEOtop model

The simulation of water and energy fluxes was done by GEOtop 2.0 model
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2.1.1. Input data
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