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SYSTEM ARCHITECTURE
The system we present is an automatic
classifier of seismic events associated
to volcanic activity. Its architecture is
built upon Supervised Machine
Learning and is in Figure1:
1- Dataset constitution
2- Features extraction
3- Learning & Testing

Ubinas is a Peruvian andesitic stratovolcano (southern Peru 
16° 22' S, 70° 54' W – alt. 5676m). Considered as the 
most active Peruvian volcano, it is closely monitored by the 
Instituto Geofisico del Peru. After nearly 40 years of 
quiescence, Ubinas volcano erupted in 2006. Three 
eruptive phases occurred since 2006, respectively 2006-
2011, 2013-2014 and 2016. Ubinas is monitored since 
2006, with four seismic stations and tiltmeters. Data are 
recorded at 100Hz.

Feature extraction is about extracting relevant information that will represent each observation. Representing each observation 
in the feature space instead that by time serie, greatly improves classification results.
Contribution 1 ▶ Features used in this work come from an extensive state of the art in signal representation for classification 
purposes in seismic and acoustic fields. Those 32 features will generally describe the signal. Especially, we use mean values, 
standard deviations, kurtosis, skewness (high order moments), entropies, threshold crossing rate, central frequency, etc.
Contribution 2 ▶ Features are extracted from three different representations of the observation: the time serie x(t), the spectrum 
X(f) = 𝕋𝔽(x(t)), and the spectrum of the spectrum X(q) = 𝕋𝔽(X(f)). This last domain is known as cepstral domain and is 
originated from speech processing to highlight harmonic properties of a signal.
Each observation is represented by a feature vector of dimension 96.

By using the feature vectors in a learning algorithm, a model is built (Figure 
5). This is known as the learning or training phase. In this work we used 
Random Forest1,2 (RF) or Support Vector Machine3 (SVM) algorithm. 
Learning is done on a fraction 𝛂 of the dataset (learning rate) and is tested on 
the remaining (1-𝛂) observations. This process is known as cross validation.

Main results include a validation of our architecture with 
90% of correct classification and the analysis of errors 
made by the model. Results between Support Vector 
Machine and Random Forest are similar.

TIME FREQUENCY CEPSTRAL ALL FEATURES

ACCURACY 86.1 ± 1.0 % 83.0 ±1.0 % 79.4 ± 1.0 % 90.1 ± 0.9 %

Ubinas Volcano

❶ DATASET CONSTITUTION ❷ FEATURES EXTRACTION

❸ LEARNING & TESTING

Table 1: Accuracy results for various feature sets. 
Training algorithm: SVM, kernel rbf, C=10, gamma = 0.01. 
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Figure 3: Learning

PROSPECTS
▶ Automatic analysis of 
continuous signals and 
application for volcano 
monitoring.
▶ Anomaly Detection with 
unsupervised learning
▶ Lowering the labelisation 
constraint with semi-supervised 
models. 

BACKGROUND

In the context of volcanoes 
monitoring, the evolution of 
seismicity is one indicator of 
volcanic unrest. We here 
propose an architecture to 
automatically classify volcano-
seismic events into one of six 
seismic classes. Our system 
reaches 90% of accuracy. 
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Figure 2: Signals 
from Ubinas. 
Six classes:
a)LP = Long Period 
b)EXP = Explosions
c)TR = Tremors
d)VT = Volcano 
Tectonic
e)HIB = Hybrid (VT/LP) 
f)TOR = Tornillo

1 Induction Decision Tree, J.R. Quinlan, 
Machine Learning, 1986

2 Random Forest, L. Breiman, Machine Learning, 2001

3 A training algorithm for optimal margin classifiers, 
B.E. Boser, I.M. Guyon, V.N .Vapnik, Proceedings of the 
fifth annual workshop on Computational learning 1992
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LP 218 16 0 1 6 1

TR 17 223 0 1 1 0

EXP 0 0 40 5 0 0

VT 1 0 6 219 11 7

HIB 3 1 0 12 121 0

TOR 0 0 0 1 0 24

Supervised Machine Learning

Random Forest
Support Vector Machine
Feature Space
Automatic Analysis

Seismic Waves

Volcanoes Monitoring

Considered number Ni of observations for each class i, each observation corresponds 
to a volcano-seismic event sampled at 100Hz. 3125 seismic events are considered, 
recorded between 2006 and 2011 (observations energy are normalized).
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Table 1. Data presentationa.

Ref. Description #(total) N
i

�
t

(in days) Mean length
LP Long period 4557 800 373 49s
TR1 Tremor type I 4678 800 81 53min37s
TR2 Tremor type II 12606 800 30 1min59s
EXP Explosion 154 154 1396 51s
VT Volcano-tectonic 1599 800 1958 24s
HIB Hybrid 466 466 1647 34s
TOR Tornillo 105 105 632 40s

a Ubinas recorded seismo-volcanic data, station UB1, 2006 to 2011. For each class c
i

we give a short description of the signals,
the total number of recorded signals, the number of considered signals for this application, the time interval needed to recorded the
considered signals and the mean length (computed on all signals). For the classification purpose, LP1 and LPP are gathered as LP
and TR1 and TR2 are gathered as TR. QUESTION: Besoin de virer la sous classification ?

Ref. Description N
i

�
t

(in days) Mean length
LP Long period 800 201 49s
TR Tremors 800 8 27min48s
EXP Explosions 154 1396 51s
VT Volcano-tectonic 800 1958 24s
HIB Hybrid 466 1647 34s
TOR Tornillo 105 632 40s

Table 2. Classification general results.

Features All features Best features Time features Freq. features
Dimension 79 11 40 39

RF 88.9± 0.5% 87.6± 0.5% 87.5± 0.6% 72.6± 0.6%
SVM 89.6± 0.4% 84.2± 0.6% 86.4± 1.6% 71.3± 0.6%

Table 3. Confusion matrixa.

True class
LP TR EXP VT HIB TOR Acc %

LP 426 10 1 3 19 3 88.7
TR 49 439 1 1 3 2 91.4

Predicted EXP 0 0 78 11 1 1 84.3
Class VT 1 0 11 444 16 6 92.5

HIB 3 0 1 16 240 1 85.8
TOR 0 0 1 2 0 50 79.1

Mean % 89.6

a This table displays the confusion matrix when using SVM

classifier (Radial Basis Function kernel) with C
RBF

= 10 and

� = 0.01 and a learning rate ↵ = 40%.
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Ubinas, Peru.

Table 1: Labeled dataset considered for this study 

Each observation has 
manually been 
assigned to its class 
by experts. The 
dataset is then said to 
be ‘labeled’.

Table 2: Confusion matrix associated to the best model.
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