
0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

10
-2

10
0

10
2

10
4

0

0.2

0.4

10
-2

10
0

10
2

10
4

0

0.2

0.4

10
-2

10
0

10
2

10
4

0

0.2

0.4

10
-2

10
0

10
2

10
4

0

0.2

0.4

10
-2

10
0

10
2

10
4

0

0.2

0.4

10
-2

10
0

10
2

10
4

0

0.2

0.4

Accounting for long-range correlations, beyond  the inter-

borehole distance L; see Figure 6. 

1. Introduction 

Assessing the availability of groundwater reserves at a regional level, 

requires accurate and robust hydraulic head estimation at multiple 

locations of an aquifer. To that extent, one needs groundwater 

observation networks that can provide sufficient information to 

estimate the hydraulic head at unobserved locations. Among other 

factors, the density of such networks is largely influenced by the 

spatial distribution of the hydraulic conductivity in the aquifer.  
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4. Results 

In the case when the hydraulic conductivities Ki, i = 1, 2, …, rmax are 

known, one can calculate the exact hydraulic head h(x) at any location 

x in the direction of the flow (see red broken line in Figure 1), as:  

2. Error distribution in hydraulic head estimation 

Figure 5: Pulse based representation of a 1D confined aquifer formed by r = 6 

independent hydraulic conductivity pulses/units of constant length lc. 

Figure 1: Schematic representation 

of the calculated (exact; red broken 

line) and linearly interpolated (green 

line) hydraulic heads in a 1D 

confined aquifer, formed by rmax 

successive hydraulic conductivity 

units of equal length.  

Suppose a one dimensional (1D) confined aquifer of total length L, 

formed by rmax successive hydraulic conductivity units of equal length 

l0 = L/rmax; see Figure 1 below. 

Figure 2: Mean value of the standardized absolute error |e(u)|, as a function of the 

standardized distance u = x/L, for different number of hydraulic conductivity 

units rmax= 4 and 8. The corresponding curves have been obtained by ensemble 

averaging the results of 1000 Monte Carlo simulations, assuming that ki (i= 1, 2, 

…, rmax) are independent realizations of a lognormal (LN) random variable with 

unit mean value, and coefficient of variation CVK = 0.1, 0.5, 1, and 2.  

It follows from statistical symmetry (see e.g. Figure 2), and simple 

geometric interpretations, that : 

A. Pulse based model 

• The cumulative distribution function (CDF) of the standardized 

absolute error |e(u)| satisfies (see Figure 3): Figure 6: Median, 75%- and 90%- quantiles of the standardized absolute error 

|e(u)| as a function of the dependence ratio r = L/lc, for different values of CVK = 

1, 3, and standardized distances u = x/L = 0.1, 0.25, and 0.5. The corresponding 

curves have been obtained by ensemble averaging the results of 10000 Monte 

Carlo simulations, using models P-B (red lines) and LNM (blue lines) 
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Assuming stationarity of the hydraulic conductivity field at spatial 

scales much larger than the inter-borehole distance L, and based on the 

dimensional analysis presented in Section 2, we use two LN processes 

with different autocorrelation structures to approximate the distribution 

of the standardized absolute error |e(u)|, using Monte Carlo simulation. 

 The standardized absolute error |e(u)| in hydraulic head estimation 

increases with the standardized distance u from the nearest 

measuring location, and maximizes at the middle (i.e. u =0.5) of 

the inter-borehole distance L. 

In this work, we study the distribution of the absolute error in 

hydraulic head estimation using: a) dimensional analysis, and b) two 

stationary stochastic models for simulation of hydraulic conductivity 

fields, with fundamentally different structures of spatial dependence: 

1) a pulse based model with lognormal (LN) marginals, and 2) a 

discrete lognormal process with Markovian autocorrelation structure.

  

  

where s = int(x/l0) is the integer part of the ratio x/l0, h0 = h(x = 0),  hL = 

h(x = L), and: 

For rmax = 4 and 8, Figure 2 shows plots of the mean value m|e(u)| of the 

standardized absolute error: 

as a function of u = x/L, assuming that ki (i = 1, 2, …, rmax) are 

independent realizations drawn from a lognormal (LN) distribution 

with unit mean value, and coefficient of variation CVK = 0.1, 0.5, 1, 

and 2. 

q = 
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h
^
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x

L
 (h0 - hL) ,  x[0, L] 

is the groundwater discharge per unit width of the aquifer (i.e. 

perpendicular to the direction of the flow). 

|e(u)| = 






h(u) - h

^
(u)

 h0 - hL
 ,  u = x/L  [0, 1] 

In the lack of hydraulic conductivity information, one can obtain an 

estimate ĥ(x) of the standardized hydraulic head h(x) by linearly 

interpolating between the two measuring locations: 

A. Dimensional analysis for 1D flow in confined aquifers 

B. Theoretical attributes of the standardized absolute error distribution   

  F|e(u)| = F|e(1-u)| ,  u = x/L  [0, ½] 

encompassing short-range dependencies 

• Due to the geometry of the problem under consideration, for any 

location u = x/L ∈ [0, ½] along the aquifer, |e(u)| is described by a 

two component distribution (see Figure 4): 

Figure 3: Schematic illustration of statistical symmetry in the study problem. 

h'(u) = (h(u) – hL)/(h0 – hL) is the standardized hydraulic head.   

h' = 1  

h' = 0 

Component 1:   0 ≤ |e1(u)|  u 

Component 2:   u < |e2(u)|  1 - u 

for any u = x/L ∈ [0, ½]  

linearly interpolated 

heads (approximate) 

u =0  

max|e2(u) |= 1- u 

max|e1(u) |= u 

u =x/L  

u =1  u = 0.5 (point of symmetry)  

Figure 4: Schematic 

illustration of the 

components of the 

complementary 

cumulative distribution 

function (CCDF) of the 

standardized maximum 

error |e(u)|. 

Aquifer 

3. Stochastic modeling of hydraulic conductivities 

In this representation, the geology of the aquifer between the two 

measuring locations is approximated by r =L/lc independent pulses of 

constant length lc, with interfaces located randomly along the aquifer; 

see Figure 5. The magnitude ki  (i = 1, 2, …) of each pulse follows a 

mean-1 lognormal distribution (i.e. K ~ LN (1, CVK
2)) with coefficient 

of variation CVK.. 

  mK =1 

• Coefficient of variation CVK: a measure for the intensity of 

hydraulic conductivity fluctuations. 

• Dependence ratio r = L/lc: a measure for 

the extent of apparent (i.e. observed) 

middle-scale heterogeneities in the 

aquifer.  

from geologic maps 

or preliminary in-

situ investigations 

Key parameters affecting the distribution of |e(u)|: 

• u = x/L: standardized distance from the nearest measuring location  

(due to statistical symmetry; see Section 2.B and Figure 3)  

B. Lognormal process with Markovian structure (LNM) 

The geology of the aquifer is approximated by a discrete lognormal 

(LN) process with exponential autocorrelation function (i.e. 

Markovian structure), and coefficient of variation CVK. The equivalent 

pulse length lc is defined as the distance where the autocorrelation 

function equals 0.1 (i.e. 10%).. 

 Due to independence of different pulses, |e(u)| is underestimated 

when lc ≥ L; i.e. for r  1 

Due to complete dependence within different pulses, the effect of 

short-range correlations on |e(u)| is maximized; see Figure 6. 

Figure 6: Schematic 

illustration of the theoretical 

autocorrelation functions of: 

(a) a pulse based (P-B) model 

with independent pulses of 

constant length lc (red curve), 

and (b) a lognormal process 

with Markovian 

autocorrelation structure 

(LNM), and the same 

equivalent pulse length as  

that in (a) (blue curve). 

5. Conclusions 

 For inter-borehole distances L ≤ lc (i.e. the characteristic linear scale 

of geologic formations in the study region), |e(u)| becomes almost 

invariant to the dependence ratio r = L/lc.   

 For L > lc, |e(u)| decreases fast with increasing dependence ratio  

r = L/Lc.   

long-range correlations dominate 

 Mild dependence of the distribution of |e(u)| on the intensity of 

hydraulic conductivity fluctuations, as described by CVK 

Low requirements for detailed hydraulic conductivity 

information, based on laboratory samples 

At the limit as r → ∞, the medium becomes uniform 
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