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emergent onsets that reach amplitudes in the 104- 105 nm/s range within Frequency [Hz]

a few seconds at the closest stations. The amplitudes show severe
attenuation within a few tens of meters across the network, typical for
endogenous seismic sources. Apparent velocity of the initial wave front
through the seismic network is below the speed of sound (< 200 m/s),
which corresponds to seismic velocities resolved within the landslide by
calibration blows and seismic noise tomography.

4 Steps as a moving source benchmark o 6 Summary and outlook

(a-c) Sonogram, spectrogram, (d) Unnormalized waveforms (2-30 Hz) Minute-long seismic signals displaying

across the network predominantly low-frequency onset that corresponds to
the initial one-block rockfall event. The signals are then followed by higher dominant
frequency and complex codas that reflect subsequent fine-grained material flows.
The high frequency tails are quickly absorbed with increasing distance to the source.
Maximal amplitudes remain below 10* nm/s. Waveform attenuation is less

pronounced than for signals in Section 3.
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