

Model-data comparison with permutation entropy: Moving beyond summary statistics

Christina Bogner¹, Britta Aufgebauer¹ and Bernd Huwe²

¹Ecological Modelling, BayCEER, University of Bayreuth DE ²Soil Physics Group BayCEER, University of Bayreuth DE

2017-04-27

Background

- Soil water participates in terrestrial water and energy cycles.
- Soil matric potential is an important driving force for soil water flow in unsaturated soil.
- Movement of soil water is often modelled by the Richards equation.
- Model quality assessed by summary statistics (root mean square error, Nash–Sutcliffe coefficient)

Does the model capture the complexity of the underlying soil processes?

Background

- Soil water participates in terrestrial water and energy cycles.
- Soil matric potential is an important driving force for soil water flow in unsaturated soil.
- Movement of soil water is often modelled by the Richards equation.
- Model quality assessed by summary statistics (root mean square error, Nash–Sutcliffe coefficient)

Does the model capture the complexity of the underlying soil processes?

Complexity of a time series

- wide range of complexity: regular (low complexity) to random (high complexity)
- caused in natural time series by nonlinearity of underlying processes and their interactions
- soil matric potential
 - signal propagation from precipitation to throughfall to infiltration
 - influenced by soil hydraulic properties, evapotranspiration and possible measurement errors

Permutation entropy (PE)

Definition

$$H(n) = -\sum p(\pi) \log p(\pi)$$
$$PE = H(n) / \log(n!)$$

- works on ranks (order of values) (Bandt and Pompe, 2002)
- suitable for an arbitrary series of observations

Example

$$\begin{split} x &= (3.1; 5.2; 7.9; -3.1; 4.0; 11.9; 0.3) & n = 2 \\ A &= \{(x_t, x_{t+1}) | x_t < x_{t+1}\} & p(A) = 4/6 \\ B &= \{(x_t, x_{t+1}) | x_t > x_{t+1}\} & p(B) = 2/6 \\ H(2) &= -4/6 \log(4/6) - 2/6 \log(2/6) \approx 0.92 \\ PE &= H(2)/\log(2!) \approx 0.92 \end{split}$$

Permutation entropy (PE)

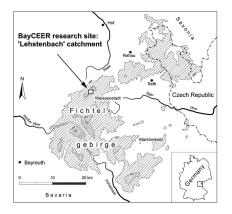
Definition

$$H(n) = -\sum p(\pi) \log p(\pi)$$
$$PE = H(n) / \log(n!)$$

- works on ranks (order of values) (Bandt and Pompe, 2002)
- suitable for an arbitrary series of observations

Example

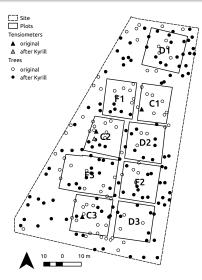
$$\begin{split} x &= (3.1; 5.2; 7.9; -3.1; 4.0; 11.9; 0.3) & n = 2 \\ A &= \{ (x_t, x_{t+1}) | x_t < x_{t+1} \} & p(A) = 4/6 \\ B &= \{ (x_t, x_{t+1}) | x_t > x_{t+1} \} & p(B) = 2/6 \\ H(2) &= -4/6 \log(4/6) - 2/6 \log(2/6) \approx 0.92 \\ PE &= H(2)/\log(2!) \approx 0.92 \end{split}$$


Weighted permutation entropy (WPE)

- for tracking abrupt changes
- weights the frequency of permutations by variance of values (Fadlallah et al., 2013)
- better suited for time series with large amplitudes in the signal compared to noise
- small WPE: small number of different patterns (regular/monotonic signal)
- large WPE: large number of different patterns (typical for noise)

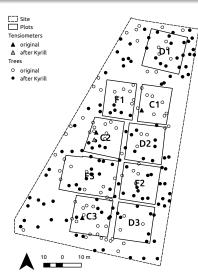
Weighted permutation entropy (WPE)

- for tracking abrupt changes
- weights the frequency of permutations by variance of values (Fadlallah et al., 2013)
- better suited for time series with large amplitudes in the signal compared to noise
- small WPE: small number of different patterns (regular/monotonic signal)
- large WPE: large number of different patterns (typical for noise)


Study area – Lehstenbach catchment

Gerstberger et al., 2004

- 4.5 km², 695–877 m a.s.l
- annual precip 1 162 mm, mean temp 5.3 °C
- Norway spruce (*Picea abies*), age 65 years


Plots

- Cambisols and Podzols
- sandy to loamy texture
- up to 15-cm thick mor-type organic layer

Bogner et al., 2017

Plots

Storm Kyrill

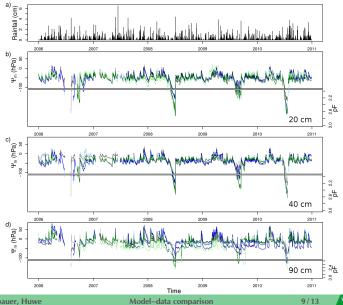
Bogner et al., 2017

Modelling the soil matric potential

WHNSIM

- Water Heat and Nitrogen Simulation Model (Huwe and Totsche, 1995)
- solves one-dimensional Richards equation
- K_{sat} measured with constant head method
- soil-water retention curve measured in the lab on undisturbed soil cores
- atmospheric conditions measured at nearby sites (Foken et al., 2017)
- model run in forward mode on the daily basis

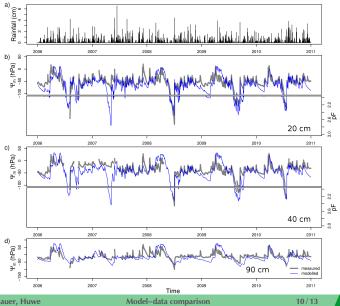
Calculating the entropy


Data pretreatment

- measured matric potential at C1 (the completest series)
- daily median values (from hourly data)
- gap filling with Singular Spectrum Analysis (Golyandina and Osipov, 2007, e.g.)

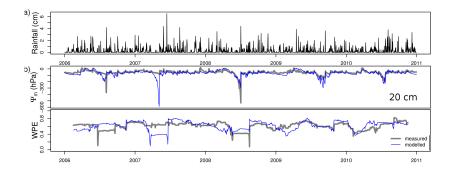
Weighted permutation entropy

- pretreated measured and modelled matric potential
- window length 90 days, slid by 1 day
- order n = 4

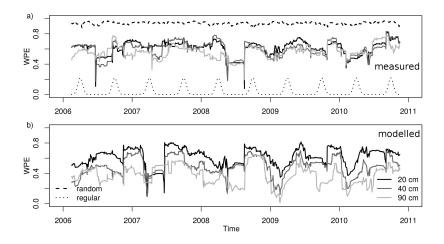

Measured matric potential

www.bayceer.de

Bogner, Aufgebauer, Huwe


Modelled matric potential

www.bayceer.de


Bogner, Aufgebauer, Huwe

Weighted permutation entropy

Bogner et al., 2017

Entropy in different depths

Bogner et al., 2017

Lessons learned

- WHNSIM captures the complexity of measured matric potential in the upper soil.
- Synchronicity of matric potential in different depths is reproduced.
- The modelled signal in 90 cm is less complex (damped) than the measurements.
- Some process might be missing from the model (in the deeper soil).

Bibliography I

- Bandt, C. and B. Pompe (2002). "Permutation entropy: a natural complexity measure for time series". In: *Physical review letters* 88.17, p. 174102.
- Bogner, C., B. Aufgebauer, O. Archner, and B. Huwe (2017).
 "Dynamics of water flow in a forest soil: Visualization and modelling". In: *Energy and Matter Fluxes of a Spruce Forest Ecosystem*. Ed. by T. Foken. Vol. 229. Ecological Studies.
 Springer, Cham. Chap. 7, pp. 137–156. DOI: 10.1007/978-3-319-49389-3_7.
- Fadlallah, B., B. Chen, A. Keil, and J. Príncipe (2013).
 "Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information". In: *Physical Review E* 87.2, p. 022911.

Literature

Bibliography II

- Foken, T., P. Gerstberger, K. Köck, L. Siebicke,
 A. Serafimovich, and J. Lüers (2017). "Description of the Waldstein Measuring Site". In: Energy and Matter Fluxes of a Spruce Forest Ecosystem. Ed. by T. Foken. Vol. 229.
 Ecological Studies. Springer, Cham. Chap. 2, pp. 19–38.
 DOI: 10.1007/978-3-319-49389-3_2.
- Gerstberger, P., T. Foken, and K. Kalbitz (2004). "The Lehstenbach and Steinkreuz catchments in NE Bavaria, Germany". In: *Biogeochemistry of Forested Catchments in a Changing Environment*. Ed. by E. Matzner. Vol. 172. Ecological Studies. Berlin Heidelberg: Springer Verlag, pp. 15–44.

- Golyandina, N and E Osipov (2007). "The "Caterpillar"-SSA method for analysis of time series with missing values". In: *Journal of Statistical Planning and Inference* 137.8, pp. 2642–2653.
- Huwe, B. and K. U. Totsche (1995). "Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with WHNSIM". In: *Journal of Contaminant Hydrology* 20.3-4. DOI: 10.1016/0169-7722(95)00073-9, pp. 265–284.