

Mesoscale Column Network for Assessing GHG and NO_x Emissions in Munich

Jia Chen (1), Florian Dietrich (1), Jonathan Franklin (2), Taylor Jones (2), André Butz (3,4), Andreas Luther (3), Ralph Kleinschek (3), Frank Hase (5), Mark Wenig (4), Sheng Ye (4), Ahmad Nouri (1), Matthias Frey (5), Christoph Knote (4), Carlos Alberti (4), and Steven Wofsy (2)

(1) Technische Universität München (TUM), Munich, Germany (jia.chen@tum.de), (2) Harvard University, Cambridge, USA, (3) Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany, (4) Ludwig-Maximilians-Universität München (LMU), Munich, Germany, (5) Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

The majority of anthropogenic greenhouse gas (GHG) emissions originate from cities, therefore monitoring emissions in cities is essential to fight climate change. In addition to GHG, nitrogen oxides (NO_x) also play an important role in the urban climate. Recently, the exceeded limits for NO_x in many German and European cities have led to vigorous discussions on the ban of diesel vehicles in cities.

Munich has a population of about 1.5 million and the highest population density in Germany. Munich sets up an ambitious emission reduction goal to cut CO₂ emissions by 10% every 5 years and be carbon neutral by 2050. The reports of the city are based on software that employs a (non-measurement) bottom-up method. The natural gas pipeline system in Munich is from the 1960s, and power plants and heating plants are mostly natural-gas based. Both could be sources of unwanted CH₄ emissions that cannot be detected using the bottom-up method. In addition, Oktoberfest, the world's largest Volksfest, is held annually in Munich. There haven't been any GHG/NO_x measurements for Oktoberfest reported so far.

In Sept./Oct. 2017, we deployed six solar-tracking spectrometers (EM27/SUN) measuring column-averaged concentrations of CO₂ and CH₄ based on the differential column measurements principle [1, 2]. Five stations were placed at the city edges to capture the inflow/outflow column amounts at arbitrary wind conditions. Additionally, one inner-city station that has already been successfully operating for 1.5 years [3], served as downwind site for half a city and upwind site for the other half. It allows for better partitioning of the city emissions. Four of the spectrometers were also utilized to monitor the column-averaged concentrations of CO, which will benefit source identification and apportionment. Further, we deployed two MAX-DOAS for mapping the NO_x concentrations in a mobile setup on several days and capturing the differential column concentrations in a stationary setup for the rest of the campaign.

Initial analyses indicate Oktoberfest as a possible significant source for CO₂, CH₄ and CO. Column enhancements of CO₂, CH₄, and CO during the Oktoberfest were around 6 ppm, 22 ppb, and 12 ppb, respectively. The enhancements before and after were significantly smaller. In addition, we detected a transient of a high CO plume (up to 20 ppb column enhancement) passing the city on 8 Sept. 2017, observed from all CO stations. We have combined these data with HYSPLIT-STILT and WRF-STILT models to retrieve city and local emissions. This investigation is part of an joint effort to investigate city GHG emissions funded by US Environmental Defense Fund.

[1] J. Chen, C. Viatte, J. K. Hedelius, T. Jones, J. E. Franklin, H. Parker, E. W. Gottlieb, P. O. Wennberg, M. K. Dubey, and S. C. Wofsy. Differential column measurements using compact solar-tracking spectrometers. *Atmospheric Chemistry and Physics*, 16(13): 8479–8498, 2016.

[2] F. Hase, M. Frey, T. Blumenstock, J. Groß, M. Kiel, R. Kohlhepp, G. Mengistu Tsidu, K. Schäfer, M.K. Sha, and J. Orphal. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city berlin. *Atmospheric Measurement Techniques*, 8(7):3059–3068, 2015.

[3] L. Heinle and J. Chen. Automated enclosure and protection system for compact solar-tracking spectrometers. *Atmospheric Measurement Techniques Discussions*, <https://doi.org/10.5194/amt-2017-292>