Geophysical Research Abstracts Vol. 20, EGU2018-10576, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. ## Occurrence and controls on N_2O accumulation in the lower Namoi alluvial aquifer, Australia Stephen J. Harris (1,2), Dioni I. Cendón (2,3), Stuart I. Hankin (3), Bryce F. Kelly (1,2) (1) Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW, 2052, Australia, (2) Connected Waters Initiative Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, NSW, 2052, Australia, (3) Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, 2234, Australia The lower Namoi alluvial aquifer (LNAA) in northwest Australia supports a multibillion-dollar agricultural sector focused around cotton growing established in the 1960s. Investigations into N_2O emissions from the LNAA and possible perturbations from agriculture and natural processes are lacking. To determine groundwater N_2O concentrations and production processes in the LNAA, we sampled groundwater from 23 bores (8.4 – 33.6 m depth) in the lower Namoi catchment. To the best of our knowledge, this is the first study to quantify N_2O in groundwater at a catchment scale in Australia. Dissolved N_2O -N concentrations ranged from $1.2-11.9~\mu g~L^{-1}$, and NO_3 -N concentrations ranged from $<0.02-5.1~mg~L^{-1}$. N_2O -N and NO_3 -N concentrations were weakly, yet positively, correlated ($r^2=0.2$, p=0.01). The highest concentrations measured in groundwater were beneath intensely cropped farms (N_2O -N ranging from $1.9-11.9~\mu g~L^{-1}$; and NO_3 -N ranging from $1.3-5.1~mg~L^{-1}$). An exception to this occurred along a groundwater transect within cropped farmland, where both N_2O -N and NO_3 -N concentrations were lower ($1.2-2.0~\mu g~L^{-1}$ and $0.02-0.3~mg~L^{-1}$, respectively). Spatially, this groundwater transect is located where the Great Artesian Basin (GAB), the largest artesian basin in the world, discharges into the LNAA (Iverach *et al.* 2017). Here, GAB input causes the groundwater to have low dissolved oxygen ($0.2-0.4~mg~L^{-1}$) and warmer temperatures ($23-26~^{\circ}C$), which promotes the reduction of NO_3^- to gaseous N_2O and N_2 via denitrification. Mean emission factors for indirect N_2O emissions (EF_{5g}; N_2O -N / NO_3 -N) from groundwater bores located onfarm (EF_{5g} = 0.2%) were lower than IPCC default EF_{5g} (EF_{5g} = 0.25%), while estimates from riparian zone groundwater (EF_{5g} = 3.0%) were higher. Importantly, EF_{5g} values from groundwater affected by GAB discharge (EF_{5g} = 3.4%) were also significantly greater than the IPCC default EF_{5g}, despite being located beneath intensely cropped farmland and having low N_2O -N contents. The proximity of GAB discharge to major basement faults (FrogTech 2006) suggests these geological features may act as principal conduits for GAB input into the LNAA. By extension, this highlights a fundamental geological control on N_2O emissions and nitrogen cycling – a concept that has been largely ignored in the literature. ## References FrogTech (2006). OZ SEEBASE TM Proterozoic Basins Study, Report to Geoscience Australia by FrogTech Pty Ltd. Iverach, C. P., Cendón, D. I., Meredith, K. T., Wilcken, K. M., Hankin, S. I., Andersen, M. S., & Kelly, B. F. (2017). A multi-tracer approach to constraining artesian groundwater discharge into an alluvial aquifer. *Hydrology and Earth System Sciences*, 21(11), 5953.