

## Can rain and hail nucleate cloud droplets?

Prasanth Prabhakaran (1,2), Stephan Weiss (1), Alexei Krekhov (1), Alain Pumir (3,1), Eberhard Bodenschatz (1,2)

(1) Max Planck Institute for Dynamics and Self Organization, Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Germany (prasanth.prabhakaran@ds.mpg.de), (2) University of Goettingen, (3) Laboratoire de Physique, ENS de Lyon

Clouds play an important role in weather prediction and climate change studies. An important process in clouds is the nucleation of water droplets under super saturated conditions. We present results from a laboratory scale moist Rayleigh Benard convection experiment composed of a mixture of pressurized sulphur hexafluoride (liquid and vapor phase) and helium (gas phase) to mimic the wet (saturated water vapor) and dry components (nitrogen, oxygen etc.) in the earth's atmosphere. The experiments were operated close to critical conditions to allow for homogeneous nucleation of sulphur hexafluoride droplets. The liquid SF<sub>6</sub> pool is heated from below and the warm SF<sub>6</sub> vapor from the liquid-vapor interface rise and condense underneath the cold top plate. We observe the nucleation of microdroplets in the wake of cold drops falling through the SF<sub>6</sub>-He atmosphere. Using classical nucleation theory, we show that the nucleation was caused by isobaric cooling of SF<sub>6</sub> vapor in the wake of the cold drop. Furthermore, we argue that in an atmospheric cloud, falling hail and large cold raindrops may induce heterogeneous nucleation of microdroplets in their wake. We also observed that under certain conditions these microdroplets form a stable horizontal layer, which separates regions of super and sub-critical saturation.