

Climatological variations of tropospheric CO₂ over the Asia-Pacific region observed by the CONTRAIL commercial airliner measurements

Taku Umezawa (1), Hidekazu Matsueda (2), Yousuke Sawa (2), Yosuke Niwa (2), Toshinobu Machida (1), and Lingxi Zhou (3)

(1) National Institute for Environmental Studies, Tsukuba, Japan (umezawa.taku@nies.go.jp), (2) Meteorological Research Institute, Tsukuba, Japan, (3) Chinese Academy of Meteorological Sciences, Beijing, China

CONTRAIL (Comprehensive Observation Network for Trace gases by Airliner) is an ongoing project that measures atmospheric trace gases during intercontinental flights of Japan Airlines. From > 12 thousands of flights since 2005, we have obtained > 8 million in-flight data points of CO₂ mole fraction along flight tracks of ascent/descent and cruise. In this study, we present CONTRAIL-based climatological variations over the Asia-Pacific region. The high-frequency CO₂ measurements reveal a clear seasonal variation of CO₂ in the upper troposphere (UT), with a maximum occurring in April–May and a minimum in August–September. The CO₂ mole fraction in the UT north of 40° N is low and highly variable in June–August caused by the arrival of air parcels with seasonally low CO₂ due to the summer uptake in boreal Eurasia. For August–September in particular, the UT CO₂ is noticeably low within the Asian summer monsoon anticyclone influenced by the convective transport of strong biospheric CO₂ uptake signal over South Asia. Vertical profiles of CO₂ over cities across the Asia-Pacific region show a spreading of this low CO₂ area in the UT during September as the anticyclone decays. Simulation results indicate significant interplay of seasonally-varying CO₂ fluxes and atmospheric circulation pattern in the seasonal evolution of the spatial CO₂ distribution over the Asia-Pacific region. It is indicated that a substantial contribution to the UT CO₂ over the northwestern Pacific comes from the continental East Asian emissions in the spring, but switches to South Asian air masses in the summer monsoon season. The observed increase in the CO₂ variability over East Asia in the spring is associated with active cyclonic passages of air masses imprinted with the continental East Asian emissions.