

Quantifying global fossil-fuel CO₂ emissions: from OCO-2 to optimal observing designs

Xinxin Ye (1), Thomas Lauvaux (1), Tomohiro Oda (2), Sha Feng (1), Eric A. Kort (3), Emily Yang (3), John C. Lin (4), Dien Wu (4), Akihiko Kuze (5), Hiroshi Suto (5), and Annmarie Eldering (6)

(1) Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, USA (xxin.ye@gmail.com), (2) Goddard Earth Sciences Technology and Research, Universities Space Research Association/Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, USA, (3) Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, USA, (4) Department of Atmospheric Sciences, University of Utah, Salt Lake City, USA, (5) Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, Japan, (6) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

Cities house more than half of the world's population and are responsible for more than 70% of the world anthropogenic CO₂ emissions. Therefore, quantifications of the fossil-fuel CO₂ emissions from major cities across the globe should facilitate the monitoring of the global emissions, in an independent and objective way. Satellite platforms, e.g. NASA's OCO-2 and Japanese GOSAT missions, provide observations of total column CO₂ (XCO₂) with favorable temporal and spatial coverage to estimate urban fossil-fuel CO₂ emissions. This work aims to address different error components in the urban CO₂ emission estimates, in order to shed insights on the optimal observation design for future satellite missions.

Based on real-data (i.e. OCO-2) and Observing System Simulation Experiments (OSSEs), we identified the major sources of emission estimation uncertainties for various types of cities with different ecosystems and geographical features, i.e. plume cities over flat terrains, basin cities with entrapped emissions, and coastal cities with mesoscale systems. The atmospheric transport errors under various meteorological conditions were characterized using the Weather Research and Forecasting (WRF) simulations at 1-km spatial resolution, and emissions imposed from the Open-source Data Inventory for Anthropogenic CO₂ (ODIAC) emissions. We quantify the errors due to limited sampling and modeling errors, including the seasonality in cloud cover and emissions, spatial distribution of biospheric fluxes, and daytime sampling bias. These factors are combined in pseudo data experiments, in order to evaluate their relative impact of uncertainties on inverse estimates of CO₂ emissions from 70 major cities across different latitudinal and climatological zones. The results indicate difficulties in sampling over the tropical cities, and the comparatively stronger impact of biogenic fluxes on the uncertainty of emission estimates for the cities in temperate zone. We propose here several sampling strategies to minimize the uncertainties for tracking urban fossil-fuel CO₂ emissions over the globe for future satellite missions, such as OCO-3 and forthcoming GOSAT missions.