Geophysical Research Abstracts Vol. 20, EGU2018-11544, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license.

Core-exsolved SiO₂ dispersal in the Earth's mantle

George Helffrich (1), Maxim Ballmer (2,1), Kei Hirose (3,1)

(1) ELSI - Titech, Earth Sciences, Tokyo, Japan, (2) D-ERDW, ETH Zürich, Zürich, Switzerland, (3) Earth and Planetary Sciences, U. Tokyo, Tokyo, Japan

 SiO_2 may have been expelled from the core directly following core formation in the early stages of Earth's accretion, a process that continues to the present day. SiO_2 is low density with respect to both the core and the lowermost mantle, and will not be confined to the core. Consequently, we examine the process of accumulation at the core-mantle boundary (CMB) and its release into the mantle by buoyant rise. The process primarily depends on the viscosity ratio of SiO_2 compared to the mantle. Today, if it is 100-10000 times more viscous than lower mantle material, the dimensions of SiO_2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions of 100 m - 10 km diameter. However, under early Earth conditions of rapid heat loss soon after core formation, diapirs of 1 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in the mantle, trapping them there. Dispersed bodies could represent as much as 8.5 vol.% of parts of the lower mantle, which, at such low concentration, a minimal effect on aggregate seismic wavespeeds. However, their presence can account for small-scale scattering in the lower mantle due to the bodies' large velocity contrast. It is entirely feasible that the shallow lower mantle (700-1500 km depth) could harbor SiO₂ released in early Earth times.