

Urban air quality evaluation scenario with the use of inverse modelling and air quality monitoring data

Alexey Penenko (1,2), Alexander Gochakov (3), Pavel Antokhin (4), and Alexey Kolker (3)

(1) Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russian Federation
(a.penenko@yandex.ru), (2) Novosibirsk State University, Novosibirsk, Russian Federation, (3) Siberian Regional
Hydrometeorological Research Institute, Novosibirsk, Russian Federation, (4) V.E. Zuev Institute of Atmospheric Optics SB
RAS, Tomsk, Russian Federation

The performance of the urban air quality evaluation system for the city of Novosibirsk is studied in the scenario approach. Modern nonlinear atmospheric chemistry transport and transformation models require input parameters like emission rates and positions of the emission sources, initial and boundary conditions, etc. In the applications, this information usually is not fully available.

The missing information on the emission sources is complemented by solving the inverse source problems with the city air quality monitoring data taken from in situ concentration measurements [1]. With the use of the adjoint problems, the inverse source problem is reformulated to the operator equation solved by variational methods. To reduce the ill-posedness of the inverse problem, a priori information about the locations and intensities of the sources is used [2]. The constant emission sources locations corresponding to the heating plants and variable sources locations along with their relative intensities describing the traffic emissions are obtained from the available databases. After the emission rates reconstruction, the WRF-Chem model is used to simulate the distribution of pollutants thus providing the air quality estimate in the whole domain. The results of some numerical scenarios and their analysis are presented.

Acknowledgement: The development of the variational algorithms was supported by RFBR Grant № 17-01-00137. The adaptation and application of the algorithms to the Novosibirsk city scenarios was supported by RFBR and the administration of the Novosibirsk region Grant № 17-41-543309.

References

- [1] Penenko, V. V.; Penenko, A. V. & Tsvetova, E. A. Variational approach to the study of processes of geophysical hydro-thermodynamics with assimilation of observation data // Journal of Applied Mechanics and Technical Physics, 2017 , 58 , 771–778
- [2] Penenko, A. V.; Gochakov, A. V.; Antokhin, P. N. & Kolker, A. B. Modelling the pollutants propagation in urban environments based on the solution of the inverse source problem with air quality monitoring data and the use of a priori information// The proceedings of the Hydrometeorological research center of Russian Federation (in Russian, submitted).