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Could rupture propagation be interpreted as a continuing cascading-up process from a tiny negligible nucleus under
broad scale stress fluctuation due to the multiscale heterogeneity of fault system? From seismological observations
[Ellsworth and Beroza, 1995; Uchide and Ide, 2007; Meier et al., 2016], rupture process does not seem to have
a specific scale during its growth stage. However, theoretical or numerical studies for the condition of cascading-
up or termination have been limited. Quantitative understanding would be possible in the same way with many
previous studies for spontaneous rupture propagation on a limited scale range [e.g., Andrews, 1976; Day, 1982;
Rubin and Ampuero; 2005].

To describe critical situations for cascading rupture, we examined a Mode III self-similar crack with a constant rup-
ture velocity, propagating into the surrounding region of high fracture energy, using numerical simulation. A small
fragile patch with a half-length R%" is embedded on a planer fault with homogeneous stress and friction condition
(T} yield strength, T,: uniform stress, p: rigidity, DgG: slip-weakening distance). Slip-weakening friction law is
applied, and D¢ inside the patch is proportional to the distance from the centre (hypocentre) as described in Eqn.
1. D, is the gradient of D¢ in the small patch, and H(x) Heaviside function. (DEC > D, R%"™)

De(r) = Dgr - H(RW™ — ) + DEC - H(r — RW™) (1

The critical crack size Rdcy"' is the smallest R4¥™" that the rupture can cascade-up to a spontaneous rupture outside

the patch. Rdcy”‘ should have specific relation with fault parameters, similar to static critical crack size RE™
(= kp - T,Dc/T?). K is a constant parameter which depends on geometry .

The crack growth inside the patch approximately satisfies Eqn. 2, which represents the balance of energy release
and consumption of self-similar crack with constant rupture velocity [c.f. Bromberg(1999)], though exponential
numbers of T, and T}, increase with larger D,.
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(E(x): complete elliptic integral of the second kind)

7T2/p=TyDe - v =V,/Vs ©)

It turned out by numerical simulation that the relation of Rdcy"' and parameters converges to the simple function
below with smaller D/C. Exponential numbers of T, and 7T}, again increase with larger D/c.

RE™ = RE“ - f(V;) = ru- T,De /T2 - f(Vy) (©)

f(V,.) is a function that monotonically decreases from 1 to about 0.5 as V,. increase from 0 to V; in Mode III
crack problem. A similar result is obtained in the three-dimension numerical simulation. Crack with small rupture
velocity is more likely to be slowed and occasionally terminated by smaller fluctuations of heterogeneity, which
high-speed rupture is not affected by. That may explain why most earthquakes have high rupture velocity [c.f.
Yamada et al.,2005; Dreger et al.,2007; Imanishi et al, 2004; Tomic et al., 2009].



