Basin-wide denudation rates of claystone lithologies in Taiwan from meteoric $^{10}\text{Be}/^{9}\text{Be}$ ratios

Kai Deng (1,2), Shouye Yang (1), Hella Wittmann (2), Friedhelm von Blanckenburg (2,3)

(1) State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China, (2) Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany, (3) Institute of Geological Sciences, Freie Universität Berlin, 12249 Berlin, Germany

Small mountainous rivers (SMRs) in southern Asia and Oceania contribute $\sim1/3$ of the suspended load\(^1\), and thus act as a critical part of global source-to-sink systems and an especially significant role in the material cycling of the Earth’s surface. Because of active tectonics and a high typhoon frequency, SMRs in Taiwan Island is characterized by extremely high erosion rates (several mm/yr) and rapid mass wasting\(^2\).

In order to quantitatively determine denudation rates averaged over centennial-millennial time scales, denudation rates from \textit{in situ} ^{10}Be (D_{insitu}) are commonly the first choice. However, claystone lithologies in the headwaters of many Taiwan rivers limit the reliability of this method to quartz-bearing units. Hence, we apply a promising new denudation rate tool, the meteoric $^{10}\text{Be}/^{9}\text{Be}$ ratio\(^3,4\). This new proxy combines an atmospheric tracer of known flux, meteoric cosmogenic ^{10}Be, with stable ^{9}Be released from rocks by weathering, and can be measured on small sample amounts and quartz-free lithologies\(^5\).

^{10}Be and ^{9}Be concentrations were analyzed in the 30-63 μm fraction of bedload sediments along the Choshui River, whose headwaters drain a region dominated by claystone lithologies, the so-called Slate Belt. To first assess ^{10}Be steady state conditions that are a prerequisite for the application of this meteoric proxy, ^{10}Be fluxes exported from the basin by river transport must equal their production by deposition. We determined the exported meteoric ^{10}Be flux by multiplying ^{10}Be concentrations with an independent erosion rate estimate from \textit{in situ} ^{10}Be\(^6\), and compared it with the depositional ^{10}Be flux derived from global atmospheric circulation models\(^7\). The ratios of exported to produced ^{10}Be flux scatter around 1 in the Choshui River, indicating their balance, and thus we proceed to calculate meteoric $^{10}\text{Be}/^{9}\text{Be}$-derived denudation rates (D_{met}). Downstream of the Slate Belt, our D_{met} agree with published D_{insitu}, where both methods yield rates on the order of 1-2 mm/yr. In comparison, D_{met} in the slate-dominated upstream are significantly higher, similar with higher modern uplift rates in the Central Range\(^8\).

We conclude that the $^{10}\text{Be}/^{9}\text{Be}$ ratio is a promising tool to derive denudation rates characterized by rapid erosion and claystone lithologies.

\textbf{References:}