

Particle based modeling of pull-apart basin development with different initial master fault configurations

Yuan Liu and Heinz Konietzky

TU Bergakademie Freiberg, Institut für Geotechnik, Faculty of Geosciences, Geoengineering and Mining, Freiberg, Germany (liuyuan0519@gmail.com)

Pull-apart basins form in extensional structures or releasing sidesteps and bends where a left-lateral strike-slip fault steps to the left or a right-lateral fault steps to the right [Fossen, 2016]. A pull-apart basin can evolve from different initial fault geometries (30° underlapping, 90° non-overlapping, and 150° overlapping releasing sidesteps). It can also develop from various initial fault kinematics such as pure strike-slip and transtension. This study establishes a scale-independent modeling approach based on the Discrete Element Method to investigate crack propagation and pull-apart basin development. Modeling results are compared with well-studied basins in nature. Main findings can be summarized as below. In 30° underlapping releasing sidestep, Riedel-shears are initiated at the tips of the master strike-slip faults. 30° underlapping pure strike-slip model produces pull-apart basins that evolve through a sequence of closely related states, from spindle-shaped through lazy-Z-shaped to rhomboidal and stretched rhomboidal basin, which is in agreement with the development of pull-apart basins proposed by Mann et al. [1983]. Transtensional models produce an oblique, wider, rhomboidal depression which is consistent with sandbox modeling [Wu et al., 2009] and Central basin in the Sea of Marmara [Armijo et al., 2002]. In 90° non-overlapping and 150° overlapping releasing sidesteps with pure strike-slip and transtensional master faults, Riedel-shears always form at the tips of master faults when peak stress is reached. Then, the Riedel-shears propagate and link with the master faults, forming a rhomboidal-shaped depression. The non-overlapping and overlapping systems directly generate rhomboidal pull-apart basins, without evolving through spindle and lazy-Z-shaped stages. Basin width does not change significantly and is governed by the separation of the master strike-slip faults. Basin length increases with increasing strike-slip displacements. The shape of a pull-apart basin in nature is the consequence of the initial fault geometry, initial fault kinematics, and its various evolution stages.

References

Armijo, R., B. Meyer, S. Navarro, G. King, and A. Barka (2002), Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian fault?, Terra Nova, 14, 80-86.

Fossen, H. (2016), Structural geology, Cambridge University Press, New York.

Mann, P., M. R. Hempton, D. C. Bradley, and K. Burke (1983), Development of Pull-Apart Basins, The Journal of Geology, 91, 529-554.

Wu, J.E., K. McClay, P. Whitehouse, and T. Dooley (2009), 4D analogue modelling of transtensional pull-apart basins, Marine and Petroleum Geology, 26, 1608-1623.