

Evaluation of sub-kilometric numerical simulations of C-band radar backscatter over the French Alps against Sentinel-1 observations

Gaëlle Veyssiére (1), Fatima Karbou (1), Samuel Morin (1), Matthieu Lafaysse (1), and Vincent Vionnet (2)

(1) Météo-France – CNRS, CNRM UMR 3589, CEN, Grenoble, France (gaelle.veyssiere@meteo.fr), (2) Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada

Snow plays a key role in surface energy and mass budgets of mountainous regions. Due to its spatial and temporal variability and the low spatial density of in-situ observations, remote sensing is a powerful method to monitor variations of snow conditions. Copernicus Sentinel-1 satellites offer a unique tool to monitor the snowpack using a C-band Synthetic Aperture Radar (SAR) with a high spatial resolution (20m) and with a revisit frequency of 6 days over the French mountains. C-band SAR is particularly sensitive to the soil properties and the thermal state of the snowpack, in particular the presence/absence of liquid water in snow.

In this study, we use the Microwave Emission Model of Layered Snowpacks (MEMLS, Proksch et al., 2015), a radiative transfer model which we interfaced with the physically-based snow evolution model Crocus (Brun et al., 1992; Vionnet et al., 2012) implemented in the land surface scheme ISBA, to simulate backscatter coefficients year-round over a wide alpine area in the Northern French Alps. Our study area is about 2500 km² with an effective resolution of 250 meters for both the simulations and the observations. Meteorological forcing data from the SAFRAN reanalysis down-scaled to the resolution considered were used to drive ISBA-Crocus. To simulate the ground signal with the best accuracy, we fitted the simulated reflectivity at the snow/ground interface according to snow-free observations from Sentinel-1. We also used high resolution land cover products to mask the forest areas. Simulated backscatter coefficients were then evaluated by comparing them with 45 observation scenes from Sentinel-1 for two snow seasons, 2014-2015 and 2015-2016. We evaluate the capacity of the model chain to reproduce the observed microwave signal and we investigate the impact of some relevant snow/soil properties on the simulated and observed microwave signals. We use the ratio between backscatter signal of snow and snow-free situations, in simulations and in Sentinel-1, as a way to identify wet snow surfaces according to the Nagler et al. (2000) algorithm. Such surfaces are also compared to Sentinel-2 snow cover extent products (<https://theia.cnes.fr>). Those products indicate the snow presence or absence on the land surface with a 20 m resolution.

Our investigations have made it possible to develop and evaluate observation operator relating backscatter coefficients to ground and snow physical properties, opening the way to assimilation of C-band radar data into this model chain.